
1 INTRODUCTION 

Fiber optics technology today offers durable solutions for bridge monitoring, and recent ad-
vances in Micro Optic Electro Mechanical Systems (MOEMS) suggest that in the near future we 
will be able to rely on very small-scale optical devices. These innovations will radically change 
monitoring methods for civil structures in coming years, although the authors suggest that in-
dustrial deployment is essential to overcome the cost issue. In this light, the University of 
Trento is promoting research to develop construction systems for smart elements suitable for 
wide application (Zonta et. al 2006, 2007). These elements are pre-cast Reinforced Concrete 
(RC) members embedding a sensing system and capable of self-diagnosis. The technology par-
ticularly targets new bridges and includes strain and environmental sensors. 

A major issue is how to exploit appropriately the large amount of measurements recorded by 
the system. A Bayesian approach provides a rational framework to interpret measurement data 
while also allowing proper handling of all prior knowledge, including material properties, envi-
ronmental conditions and sensor performance. This methodology allows to identify not only the 
most likely values of the unknown damage parameters (such as type, position and extent) but 
also their posterior probability distribution. 

This paper introduces both the technological and the methodological aspects of the develop-
ment and operation of the smart elements, and is essentially divided into two parts: first, in Sec-
tion 2, we present the general formulation of the Bayesian algorithm developed to assess the 
condition state of the smart elements; next, in Section 3, we illustrate the development of a re-
duced-scale prototype of smart beam and we demonstrate how the updating algorithm applies to 
the identification of the loss of prestressing, artificially produced on the element during a labo-
ratory experiment. 
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ABSTRACT: This paper introduces a concept of smart structural elements for the real-time 
condition monitoring of bridges. These are prefabricated reinforced concrete elements embed-
ding a permanent sensing system and capable of self-diagnosis when in operation. The real-time 
assessment is automatically controlled by a numerical algorithm founded on Bayesian logic: the 
method assigns a probability to each possible damage scenario, and estimates the statistical dis-
tribution of the damage parameters involved (such as location and extent). To verify the effec-
tiveness of the technology, we produced and tested in the laboratory a reduced-scale prototype 
of smart beam. The specimen is 3.8 m long and has a 0.3 by 0.5 rectangular cross-section, and 
has been prestressed using a Dywidag bar, in such a way as to control the preload level. The 
sensor system includes a multiplexed version of SOFO interferometric sensors mounted on a 
composite bar, along with a number of traditional metal-foil strain gauges. The method allowed 
to clearly recognize increasing disease states, simulated on the beam by gradually reducing the 
prestressing level. 
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2 IDENTIFICATION CONCEPT 
2.1 Introduction to Bayesian logic 
The Bayesian theory of probability originates from Bayes’ well known essay (Bayes 1763). 
Many modern specialised textbooks can provide the reader with a critical review and applica-
tions of this theory to data analysis (see for instance Gregory 2005, Sivia 2006). Of all the pa-
pers dealing with application of Bayesian theory to engineering problems, the authors wish to 
underline Beck’s work (Papadimitriou et al. 1997, Beck & Katafygiotis 1998, Beck & Au 
2002), which by disseminating these concepts had great impact on the civil engineering com-
munity. 
2.2 Problem statement 
Assume we have a bridge instrumented with a certain number of sensors, and we want to gain in-
formation on the state of the bridge based on the data recorded. Each sensor provides a measure-
ment for each of NT time values (t1,t2,….,tNt). It is convenient to distinguish two types of gauges: 
sensors recording the structural response of the bridge, and sensors recording the load and envi-
ronmental effects on the bridge. The first set might include sensors such as strain gauges, acceler-
ometers, displacement transducers. In a broad sense, we can classify as a response sensor any in-
strumentation setup capable of providing a response quantity. For simplicity’s sake, here we will 
assume that these are all strain gauges. Say that the structure is instrumented with Ns sensors of 
this type, labelled (s1,s2,….,sNs), and let us label εi,j the strain measurement recorded by sensor sj at 
time ti. The second set includes, for example, thermocouples installed next to the strain gauges for 
temperature compensation or load cells applied at the bridge bearing, capable of recording the traf-
fic loads: these are defined as environmental sensors. The basic idea is that response measurements 
depend, on the one hand, on external actions such as temperature and loads; on the other on long 
term effects, such as dead load redistribution, creep, shrinkage, strand relaxation. Long term effects 
produce slow changes in the structural response. Accordingly, it is convenient to organize meas-
urements into time intervals (e.g. per day), it being a time span short enough to assume that long 
term changes are negligible and long enough to ensure that short term changes are significant. Let 
us define mT,j the vector including all the strain measurements recorded by the sensor sj in time in-
terval T and mT the matrix including all strains in time interval T. Finally let us label MT the whole 
dataset from the first time interval (i.e. from the start of monitoring) to time interval T. Similarly to 
strain measurements, we define as hT the matrix including all environmental measurements in time 
interval T. Data acquired during this sample period can be organized into matrix form: 

mT,j = ε0
T,j+ hT aT,j + gT,j (1) 

where ε0
T,j is strain independent of load or temperature (i.e. the compensated strain), aT,j is the 

vector including the coefficients of the linear correlation from load to strain, and gT,j is a noise 
vector, which is assumed to have zero mean Gaussian distribution with standard deviation 
(σg)T,j. Equation 1 assumes that the effect of load (or in general of external actions) on strain is 
linear, although this is not the most general case.  

We assume that the presence of damage in the structure will generally modify the compen-
sated response history. Thus, the identification method seeks to detect the presence of damage 
by comparison of the compensated measurements with the theoretical response produced by a 
model. In practice, it is convenient to divide the domain of the possible structural response into 
a mutually exclusive and exhaustive set of scenarios (S1,S2,….,SNd), each defining the structural 
behaviour in a specific condition (e.g. reinforcement corrosion). A single probability result for 
each scenario is one of the main advantages of this approach. The structural strain response 
nrT,j(nx) for day T and sensor sj in scenario n is controlled by a certain number of parameters nx 
(e.g. damage position, activation time, corrosion rate). The structural response is completely de-
fined by specifying a scenario and a value for the correlated parameter set. Here, as in the 
Bayesian model selection theory (Bretthorst 1996, Sivia 2006), the discrete meta-parameter sce-
nario identifies the response function which in turn is specified by a parameter set. The differ-
ence between measurements and structural response is just random noise. Assuming scenario n 
and nx to be correct, the compensated strain can be expressed as: 

ε0
T,j = nrT,j(nx) + eT,j (2) 
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where eT,j is the model error. We assume eT,j is a random error modelled as an uncorrelated 
Gaussian noise, with zero mean and standard deviation (nσe)j. This is independent of time, but 
generally changes with the sensor. Evidently, (nσe)j changes with sensor type but we may expect 
a dependency, for example, on sensor position or precision. More in general, we can state that 
(nσe)j is a function of a set of scenario-dependent parameters ny. In summary, we can state that 
each scenario is fully described by a set of parameters np=[ nx ny ]. 

2.3 Compensation of strain measurements 
Estimation of the compensated strain ε0

T,j introduced in Equation 1 is defined by its mean value 
(με)T,j and standard deviation (σε)T,j. As Equation 1 is linear, it is possible to formalize a rigorous 
Bayesian procedure to identify these quantities. To do so, one must furnish a prior characteriza-
tion of the linear correlation vector aT,j by distribution PDF(aT,j|I)=Normal(aT,i;μπa,Σπa), where 
Normal(x;μ,Σ) indicates the multi-dimensional Gaussian distribution with mean value vector μ 
and covariance matrix Σ computed in x, I means all the available background information and 
PDF stands for Probability Density Function. Then the procedure proceeds as follows: 
- Expanded vector vT,j =[aT,j

T ε0
T,j]T is defined, and mean value μπv and covariance matrix Σπv 

of its prior distribution are obtained by adding zero components to μπa and Σπa. 
- The best fitting value for vT,j is calculated by solving a linear system and assumed as mean 
value μLv of the likelihood distribution, (σg)T,j is derived by the difference between the actual 
measurements and the best fitting prediction (Yuen 2002), and the covariance matrix ΣLv is 
given by the classical least squares formula (Gregory 2005). 
- Since posterior distribution is the product of prior and likelihood, both of which are Gaus-
sian, mean value μPv and its covariance matrix ΣPv can be computed in close form (Jaynes 
2003). 
- Once the posterior distribution of expanded vector vT,j is obtained, (με)T,j and (σε)T,j derive 
from its marginalization and therefore, since distribution is Gaussian, they can be directly read 
as components of μPv and ΣPv respectively. 

The whole procedure can be seen as a kind of filter that processes the response (mT,j) and the 
environmental (hT,j) measurements to give an estimation of the compensated strain, i.e. the strain 
independent from environment influences. By doing so, the number of samples is reduced, so 
that a single strain estimation is associated to each sensor and time interval. Pros of the filter are 
twofold: on one hand it reduces the number of data that have to be processed by the general 
identification model described in the next section while on the other it allows to avoid including 
in that model the any environmental effects that the filter annihilates. 

As anticipated, to apply the filter it is necessary to fix a criterion to select distribution 
PDF(aT,j|I). It is worth noting that, at the end of the procedure previously described, it is easy to 
read into the components of μPv and ΣPv the ones related to aT,j. Thus, the updated distribution 
for aT,j can be assumed as a prior for aT+1,j: this is logical if one assumes that aT,j = aT+1,j. Alterna-
tively, when the value of a evolves in time, we assume that: 

aT+1,j = aT,j + daT,j (3) 
where daT,j models the variation of linear correlation vector from T to T+1. If prior distributions 
for aT,j and for daT,j are both Gaussian, it is straightforward to calculate the prior distribution for 
aT,j+1 as that related to the sum of Gaussian distributed random variables. 

2.4 Scenario updating procedure 
Once compensated strain is estimated, the method here presented allows for calculation of the 
probability of being in each scenario, as well as the statistical distribution of the associated pa-
rameters. If the probability at day (or time interval) T-1 of being in a specific scenario is known, 
Bayes' theorem allows us to update this probability using the fresh data acquired on day  T: 
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The first term at the numerator, sometimes referred to as evidence of scenario Sn, can be calcu-
lated by integrating over the whole parameter domain Dnp, using: 
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n n n
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When many parameters are involved in Equation 5, the exact integration might require an ex-
ceptional computational effort and needs to be circumvented with numerical techniques. One of 
the simplest ways is to apply Laplace asymptotic expansion (Beck & Katafygiotis 1998). Monte 
Carlo algorithms are alternative methods: they are classified into Classical Monte Carlo meth-
ods and Markov Chain Monte Carlo methods (MacKay 2003); both rely on the possibility of 
drawing samples from a target distribution and of computing an integral making average along 
the sample. While the former family draws samples independently from a fixed distribution, the 
latter produces a step by step random walk in the parameter domain. Whatever the numerical 
method adopted, the denominator of Equation 4 can be expressed as: 
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In a similar manner, we can calculate the PDF of the parameters governing a specific scenario: 

( ) ( ) ( )
( )

1

1

PDF , , PDF , ,
PDF , , =

PDF , ,

n n
T n T nn

T n
T T n

S I S I
S I

S I
−

−

⋅m p p M
p M

m M
, (7) 

where the first term at the numerator, which appears also in Equation 5, is: 
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Of course, the first application of Equations 4 and 7 requires the definition of prior values of 
probability of each scenario prob(Sn|I) and distribution of parameters vector PDF(np|Sn,I). The 
only remaining problem is how to obtain PDF(mT,j|np,Sn,I). It is demonstrated that: 

PDF(mT,j|np,Sn,I)=Normal(nrT,j(nx); (με)T,j, (σε)T,j
2+(nσe)j

2), (9) 
In summary, the proposed Bayesian identification procedure consists of two steps: first, the 

strain measurements are compensated using the filter illustrated in Section 2.3; then the identifi-
cation procedure presented in this section processes the obtained estimation. 

3 LABORATORY VALIDATION 

3.1 Specimen description and test protocol 
To illustrate how the Bayesian updating procedure works, here below is the application of the 
algorithm in a laboratory campaign, in which a reduced-scale sample of a precast RC element 
has been produced and tested to simulate the response of the deck of new bridges. The specimen 
is 3.8 m long, has a 0.3 by 0.5 rectangular cross-section and has been pre-stressed using an in-
strumented Dywidag bar (Fig. 1), in such a way as to control the preload level. 
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Figure 1. Longitudinal and cross sections of the prototype of smart element. 
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The prototype is equipped with traditional sensors, including 12 metal-foil strain gauges and 
2 thermocouples, as well as with two novel types of Fiber Optic Sensors (FOS). As shown in 
Figure 1, the strain gauges measure the longitudinal strain and are arranged at the four corners 
of 3 cross sections. The first type of FOS is a multiplexed version of the standard SOFO (Sur-
veillance d’Ouvrages par Fibres Optiques) interferometric sensor, originally developed, pro-
duced and commercialized by Smartec SA (Pozzi et al. 2007). It is arranged in a 3-field scheme, 
placed along the lower edge of the specimen with a measurement base of 1.00 m for each field. 
To facilitate the sensor installation into the reinforcement frame and to protect it during concrete 
pouring, its packaging makes use of a composite support to which the fibers are glued. The sec-
ond type of FOS, labelled Coil sensor, is based on the direct time-of-flight measurement of 
pulses travelling into the fiber. It is placed at the upper edge of the mid span section and meas-
ures the strain on a 0.60 m base. Figure 2 shows the instrumented reinforcement frame before 
concrete pouring: the coloured boxes at the ends of the frame were placed at the interface be-
tween concrete and mould and used to introduce the transmission cables (Fig. 3). 

The scope of the experiment was to correlate the response of the embedded sensor to different 
prestressing levels induced on the beam. Different levels of cracking have been produced 
through the application of a vertical load action using an hydraulic actuator (Fig. 3): the load 
protocol includes a sequence of load-unload cycles, repeated for different values of pre-
stressing, up to the yielding of the regular reinforcement. In this case, the specimen was sub-
jected to 6 cycles of the vertical load, each ranging from 0 up to 250 kN. Between successive 
cycles the prestressing force was progressively decreased from 450 kN down to 250 kN. During 
this test, each sensor was continuously acquired with a sample frequency of 1 Hz. Figure 4 
schematically shows the load protocol as well as that of the grouping of the measurements into 
time intervals. 

3.2 Identification procedure 
Aim of the identification is to recognize the loss of prestressing based only on the strain meas-
urements and vertical load data, and to compare the resulting estimation with that measured by 
the load cell placed on the bar. The 12 foil strain gauges are assumed to be response sensors (s1-
s12), while the load cell that records the vertical load is the only environmental sensor adopted. 

As illustrated in Section 2, data elaboration is carried out in two steps: first the complete 
strain history is depurated of the environmental contributions (i.e. of the influence of the vertical 
load) to obtain a compensated strain history, then this is processed to obtain the prestressing 
loss. 

Figure 3. Appearance of the prototype during the loading test.

Figure 2. Instrumented reinforcement frame before concrete casting. 
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Figure 4. Load protocol: vertical load (upper graph) and prestressing load (lower graph). 

To apply the first step, the whole time history is divided into 14 time intervals (Fig. 4), so that 
each interval includes either a complete loading sequence or a period with no vertical load ap-
plied. The filter described in Section 2.3 is applied, independently to each response sensor, ob-
taining an estimation of the compensated strain value for each time interval. To do so, the prior 
distribution for the linear correlation coefficient aT+1,j is assumed to have the same mean value 
of that updated for aT,j but with double the variance: according to the formalism of Equation 3, 
this means that σ2(daT,j) = σ2(aT,j). This assumption takes into account the possibility of a stiff-
ness variation due to the cracking of concrete. As an example of results, Figure 5a reports both 
the strain measurements (with dots) and the compensated strain history for sensor s8. To depict 
the compensated history, 3 lines are shown in the picture: the continuous one indicates the mean 
values (με)T,8 while the dash-dotted and dotted ones add and subtract the standard deviation 
(σε)T,8 to the mean value. 

Once the compensated strain history is obtained, two possible scenarios are assumed: accord-
ing to the first one (S1), no loss of prestressing is involved while, according to the second one 
(S2), a loss of prestressing of arbitrary amount is assumed. The compensated strain is trans-
formed into the difference Δε0

T,j between the current state and the reference one, i.e. the state be-
fore any vertical load was applied. In detail, S1 models this difference as due only to plastic ef-
fects: 

Δε0
T,j = εpT,j + eT,j (10) 

where εpT,j is the plastic contribution due to creep, relative to sensor sj and time interval T, and 
is modelled as a deterministic function (Collins & Mitchell 1991). Thus, no free parameter 1x is 
assumed for S1, and 1rT,j=εpT,j. For this and for the following scenario, prior knowledge on error 
variable eT,j is assumed to be a zero mean Gaussian distribution, whose variance is unknown and 
modelled by a flat distribution between 10 and 40 με. Scenario S2 assumes a linear model for the 
prestressing contribution, maintaining the same formula for the plastic effect. The difference of 
compensated strain here is modelled as: 

Δε0
T,j = kj · ΔPT / Ec + εpT,j + eT,j (11) 

where kj is a geometrical constant (known with certainty) relative to sensor sj, Ec is the Young 
modulus of concrete, ΔPT is the loss of prestressing at time interval T. Based on an independent 
test on concrete specimens, Ec is assumed to be modelled by a Gaussian distribution with mean 
value 20 GPa and standard deviation 5 Gpa. Conversely, a non-informative flat distribution is 
assumed for ΔPT. Assuming the formalism of Section 2.4, the parameter vector and the scenario 
response function for S2 are respectively: 

2x=[Ec ΔP1 … ΔP14] ,  2rT,j(2x) = kj · ΔPT / Ec + εpT,j (12) 
Figure 5b reports the updated distribution of ΔPT after processing the data. Continuous line 

indicates the mean value, while dash-dotted and dotted lines add and subtract the standard de-
viation. In the same graph the prestressing loss measured by the load cell is reported with cir-
cles. Prior probabilities of the two scenarios are assumed to be the same, i.e. 
prob(S1)=prob(S2)=0.5. Figure 5c reports the probability of scenario S2 as more and more esti-
mations become available: as shown, probability grows quickly up to 1, and the identification 
system becomes sure that a loss of prestressing is involved. The graph shows that during the 
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first cycles, when the prestressing force was not reduced yet and its value was fluctuating be-
cause of external influences, the identification ranges between 0.3 and 0.9. However, once the 
prestressing force is actually decreased, the system recognizes this variation. 

It is worth noting that the two scenarios present a different degree of complexity: scenario S2 
involves free parameters, which make it capable of following more closely the compensated 
strain history. Furthermore, scenario S1 can be regarded as a special sub-case of scenario S2, 
when all ΔPT are null. The reader might argue that, because of this, the probability of scenario 
S2 will be always greater than that of S1. Actually, this is not necessarily the case. Indeed, by 
tuning the parameters of scenario S2, we can obtain a better fitting than that related to scenario 
S1. However, according to Bayesian logic, also the ratio between the best fitting and the average 
fitting (the so-called Ockham factor) plays a fundamental role (Sivia 2006). 

Finally, the limits of the presented application should also be mentioned. According to its ba-
sic assumptions, analysis of parameters aT,j is not included in the estimation of the loss of 
prestressing. In reality, the value of aT,j generally depends on stiffness variation and, conse-
quently, on the cracking pattern induced by the loss of prestressing. During the test, a decrement 
of the value of aT,j was actually observed. However, far more complex non-linear models are re-
quired to describe these interactions. 
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Figure 5. Measured and compensated strain for sensor s8 (a); estimated and measured prestressing loss 
(b); probability of scenario S2 (c). 
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4 SUMMARY 

The proposed Bayesian identification procedure provides a rational quantification of the influ-
ence of monitoring data on the knowledge of the occurrence of different scenarios. With respect 
to classical damage detection methods, its merit is to provide not only information on the dam-
age, but also the degree of confidence of this information. This is of paramount importance 
when the results of damage assessment serve as input in decision-making processes. 

The application of this procedure to the condition assessment of a smart element prototype 
shows the potential of this approach. For instance, the test reported clearly shows that parame-
ters such as loss of prestressing can be identified with a high degree of reliability. Despite the 
fact that the example provided is limited, the general approach is not problem dependent, and 
can be extended to a broader class of problems, including manifold scenarios, model or material 
uncertainties, prior knowledge of parameter distribution. 
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