
1 INTRODUCTION 

1.1 Background and motivation of this research 
The Autonomous Province of Trento Bridge Man-
agement System (APT-BMS) has been operational 
since 2004; it manages 1017 bridges and approxi-
mately 2400 kilometers of roads. The APT-BMS is 
capable of seismic vulnerability analysis, based on 
the definition of fragility curves; these are devel-
oped using a capacity-spectrum approach under 
HAZUS guidelines (FEMA 2003). Using this 
model, the seismic vulnerabilities of all bridges in 
APT-BMS were analyzed. In APT-BMS, we con-
sider three earthquake scenarios, with return periods 
of 72 years, 475 years, and 2475 years respectively. 
The probabilities of being in one of the four damage 
states, operational (OLS), damage control (DLS), 
life-safety (LLS), and collapse (CLS), are calcu-
lated. (For more details of the seismic vulnerabilities 
in APT stock, see Yue et al. 2010).  

As we can expect, the seismic vulnerabilities of 
any two bridges are very similar when they have 
similar characteristics as to type, material, and con-
struction year; on-site inspection shows that the con-
ditions of similar bridges are also very close. Based 
on this observation, it is reasonable to assess the 
seismic vulnerability of any one bridge based on the 
known condition of another similar. This motivates 
us to find the correlation of seismic vulnerabilities 
between similar bridges.  

However, the HAZUS model is just a static as-
sessment of seismic risk; it only allows calculation 
of the failure probability for a single structure. To 
address this problem, here we adopt a post earth-
quake assessment system, based on the framework 
of Bensi et al. (2009) which can update the seismic 
probability of bridges after observing some evi-
dence. In that work, the authors proposed a probabil-
istic Decision-Support System (DSS) for near-real 
time emergency response, after a seismic event, 
based on a Bayesian Network methodology. This 
DSS incorporates a wide-range of sources and pro-
vides a comprehensive description of the state of a 
geographically distributed infrastructure system.  

In this paper, we apply the framework to the 
APT-BMS; twin bridges named Fersina-Canezza 
and Avisio are considered in this system. Here, by 
‘twin’ bridges we mean that the two bridges have 
similar characteristics as to type, material and con-
struction year. The basic idea is that when an earth-
quake occurs, the limit state of one bridge is de-
tected or the information on earthquake magnitude 
is obtained, the distribution of other unobserved 
variables such as the probability of another bridge 
being in some damage state can be updated. 

1.2 Application of Bayesian Network in civil 
engineering risk assessment 

A Bayesian Network (BN) is a directed acyclic 
graph (traditionally abbreviated DAG) together with 
a set of nodes and a set of directed edges (Jensen & 
Nielsen 2007). The nodes represent variables and 
the edges represent condition relationships among 
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the variables. The BN originates from the field of ar-
tificial intelligence and incorporates graph theory 
and probability theory. It is a useful tool that helps 
perform uncertainty analysis in complex systems. 
For an extensive explanation of BN, see Jensen & 
Nielsen (2007). Due to their generality, such as in-
corporation of graph theory and probabilistic infer-
ence, accounting for the evolving nature of available 
information, BNs have been widely used in many 
areas in the last two decades. 

However, the general BN algorithm can only ef-
fectively handle discrete variables, while most vari-
ables in civil engineering areas are continuous; 
therefore the application of BN to civil engineering 
is still at a preliminary stage. Friis-Hansen (2000) is 
one of the first publications that applied BN to engi-
neering risk related issues: by solving decision prob-
lems in marine engineering, the potential of BNs in 
risk analysis was investigated and their advantages 
such as flexibility and compatibility were demon-
strated; Nishijima et al. (2009) modelled a transpor-
tation system with BN which related the reliabilities 
of individual system components to overall per-
formance: given an acceptance criteria, it proposed 
finding target reliabilities for components in a 
complex engineering system. Daniel Straub has 
done much work in applying BN to civil engineering 
risk assessment: first he proposed a framework for 
the earthquake hazard through a ground motion 
attenuation law, and then applied this model to a 
transportation system (Straub et al. 2008, Bensi et 
al. 2009). In addition, he also proposed some models 
to calculate the risks of rock-falls and avalanches, 
based on Bayesian updating (Straub 2005, Straub & 
Grêt 2006, Straub & Schubert 2008).  

Most of the above research used discretization to 
approximate continuous variables when dealing with 
hybrid BNs, which contain both continuous and dis-
crete variables. The continuous variables are re-
placed by discrete variables with a sufficient number 
of stages. However, this would add to the computa-
tion burden when high accuracy is to be achieved. 
Fortunately, when the continuous variables have 
conditional linear Gaussian distributions, and the 
discrete nodes do not have continuous parents, there 
exists exact inference in hybrid BNs (Lauritzen & 
Jensen 2001). In this paper, in order to avoid ap-
proximating continuous variables, all the variables 
in BN are assumed to follow Gaussian distributions, 
so the exact inference methods can be performed on 
the framework.  

The remainder of the paper is as follows. In sec-
tion 2, the HAUZUS, demand and capacity models 
are described. In section 3, the general computation 
scheme which includes construction of a junction 
tree, initialization and propagation, is introduced 
and performed on a case study. Last, the results are 
given and analyzed. 

2 MODEL DESCRIPTION 

2.1 Descriptions of the DSS  
Bensi et al. (2009) modelled seismic demands of an 
infrastructure system by constructing a BN model of 
ground motion intensity. In that BN model, the 
seismic intensities (Si), normally characterized as 
peak ground accelerations (PGA) at different sites 
across a spatially distributed infrastructure system 
following an earthquake, are expressed as a function 
of the magnitude (M), site-to-source distance (Ri), 
and other characteristics of the source and site (Xi), 
such as the type of faulting mechanism and the site 
shear-wave velocity; the source-to-site distance is a 
function of the earthquake location and magnitude. 

Given the distribution of ground motion intensity 
at the site, the performance of infrastructure system 
components is modelled using fragility functions 
which provide the probability of exceeding some 
specific damage state. Then the system performance 
is modelled based on the performance of its compo-
nents. Figure 1 gives the conceptual framework, 
taken from that paper.  

In this paper, we apply this DSS to two twin 
bridges in APT-BMS. In order to facilitate computa-
tions, some simplifications and modifications are 
made to the framework in Bensi et al. (2009). Below 
we introduce the demand model, capacity model and 
fragility function in the application framework. 

2.2 Bridges descriptions 

The Fersina-Canezza (A) and Avisio (B) are ‘twin’ 
bridges in APT-BMS. Both are 3 span prestressed 
concrete bridges with wall piers, non monolithic 
abutments, built in year 1967. The lengths of the 
two bridges are 58.3m and 57.5m respectively. In 
figure 2 and figure 3 we can see overviews and cross 
sections of these structures.  

2.3 Demand model 

The attenuation relation for peak horizontal accel-
eration is as follows (Joyner & Boore 1981):  
log 0.249 log 0.00255 0.26 1.02sPGA M r r E= − − + −  
                                   (1) 
where PGA is peak ground acceleration in g; M is 
magnitude of earthquake in terms of the Richter 
scale; r is the source-to-site distance in km; Es is the 
error term with a standard Gaussian distribution. In 
Bensi et al. (2009), M is assumed to follow trun-
cated exponential distribution. To facilitate calcula-
tion, in this paper we assume it has Gaussian distri-
bution. 



 
Figure 1. Conceptual framework of BN in Bensi et al. (2009) 
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Figure 2. Bridge over the Fersina-Canezza (a) overview (b) elevation of piers and deck 
 

 
Figure 3. Bridge over Avisio (a) overview (b) elevation of the piers and deck 
 

2.4 HAZUS model 
Fragility curves are conditional probability state-
ments which give the likelihood of a bridge reaching 
or exceeding a particular damage level for an earth-
quake of a given intensity (Shinozuka et al. 2000, 
Nielson 2005), this normally expressed as peak 
ground acceleration (PGA). The fragility function 

used in this paper is given by the HAZUS model 
(FEMA 2003). In this model, the probability of be-
ing in or exceeding a damage state is modelled as: 

1
Φ[ ln( )]i
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PGA
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where Φ is the standard log-normal cumulative dis-
tribution function; Ai is the median spectral accelera-
tion that causes the ith damage level (operational, 
damage control, life safety, collapse); β is the nor-
malized composite log-normal standard deviation 
which takes account of uncertainty and randomness 
for both capacity and demand. Basöz & Mander 
(1999) recommend that β=0.6. Although this value 
should be better tuned to take into account the un-
certainties embedded separately, here for simplicity 
we acknowledge Basöz & Mander’s suggestion. 

2.5 Capacity model  
Based on Yue et al. (2010), the median spectral ac-
celeration Ai in equation (2) is calculated as:  
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where Cc  is the capacity factor; S is the coefficient 
that relates to the soil type; η is the damping correc-
tion factor with a reference value of η=1 for 5% vis-
cous damping; F0 is the spectral amplification fac-
tor; TC is the upper limit of the period of the 
constant spectral acceleration branch; K3D is a factor 
accounting for the 3D arching action when dis-
placements are sufficiently large; Δ is maximum 
displacement response in meters, assumed as [0.05, 
0.1, 0.175, 0.3] here.  

In equation (3), all the parameters are determinis-
tic except the capacity factor Cc . 

Since the two bridges both have wall piers, their 
possible damage group belongs to the type “weak 
bearings with strong piers”. According to Basöz & 
Mander (1999), the capacities are assumed to arise 
from bearings only. In this case, it is assumed that: 

c tC μ=  (4) 
where μt =coefficient of sliding friction of the bear-
ings in the transverse direction. The reader is re-
ferred to Yue et al. (2010) for further information. 
  In order to consider the relationship between dif-
ferent limit states, the friction coefficient for each 
limit state is assumed to have a linear relation with 
some factor f: 

1 2 3 4[( ) , ( ) , ( ) , ( ) ] [0.85,0.75,0.75,0.75]t t t tμ μ μ μ f= ⋅  
 (5) 

f is assumed to follow lognormal distribution. 
log (0,0.01)f N:  (6) 

An error term Ec is used to consider the uncer-
tainty in the capacity model. 

( ) ( )c i t i cC μ e= ⋅  (7) 
In equation (7), the uncertainty term ec is assumed to 
follow the distribution. 

log (0,0.0001)c cE e N= :   (8) 
Note that for different limit states, displacement re-
sponses Δ  differ, so the the median spectral accel-
erations Ai in equation (3) are also different even 
though they have the same friction coefficient in 
equation (5).  

2.6 Calculation framework 
Figure 4 is the Bayesian network for the post-
earthquake assessment framework. In this frame-
work, M is the earthquake magnitude:  

(5,0.25)M N:  (9) 
S1 and S2 are factors related to seismic intensities at 
the different sites where the two bridges are located:  

1 (log )aS PGA=                          (10a) 

2 (log )bS PGA=  (10b) 
The source-to-site distances for the two bridges 

are 10 and 20 respectively. Es1 and Es2 are factors re-
lated to intensity uncertainties; Ec1 and Ec2 are fac-
tors related to capacity uncertainties defined in 
equation (8); C is the factor that correlates the ca-
pacities of the two bridges: 

logC f=                   (11) 
OLS, DLS, LLS, and CLS are factors related to the 

probabilities of exceeding limit state operational, 
damage control, life safety, and collapse respec-
tively. Since all the variables in this BN must follow 
Gaussian distribution, we use the variable (lnPGA-
lnAi)/ β  rather than Φ((lnPGA-lnAi)/ β) to represent 
the probability: 
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  After discussion of the models embedded in the 
framework, the next section will give the general 
computation procedures in conditional Gaussian 
BN. 



 
Figure 4. The Bayesian Network for the for the post-earthquake assessment framework 
 

 
Figure 5. The junction tree structure for the BN in fig 4. 

3 BAYESIAN NETWORK COMPUTATION 

The previous section introduced the conceptual 
framework and the initial assumptions as to the rele-
vant variables. In this section, we show the general 
computation procedures including: the construction 
of a junction tree, initialization, entering evidence 
and local computation, and then the framework is 

calculated using HUGIN software 
(http://www.hugin.com).  

A junction tree is a tree structure for analysing 
decision problems. Given a directed acyclic graph, 
the basic steps to construct a junction tree are as fol-
lows (Jensen & Nielsen 2007):  
1. Moralisation. Marry parents with common chil-

dren and drop directions on the arcs. 
2. Triangulation. Set an elimination sequence and 

form a triangulated graph. A clique is formed 



from the eliminated variable and its remaining 
neighbours. If all variables of one clique belong 
to an existing clique, then it is not a clique. This 
is the key part in the junction tree construction, 
because it governs the size of cliques and effi-
ciency of the computations.  

3. Join the cliques H1, H2, H3, …, Hk to form a tree 
which has the running-intersection property. The 
running-intersection property means that the 
elements of the intersection set of H1 and Hk 
must be included in all the cliques H2, H3 , …, 
Hk-1 that between H1 and Hk.  

Once the junction tree has been established, all 
the potentials which give the conditional relation-
ship between variables are assigned to the cliques. 
For each variable x, if one clique contains x and 
pa(x) which means parents of x, then the potential 
P(x|pa(x)) is assigned to it. After the initialization, 
all inference and updating operations are performed 
on the clique tables.  

The propagation operation includes two parts: 
collect evidence and distribute evidence. Collecting 
evidence involves sending messages from the leaves 
of the junction tree to the root. A clique is allowed 
to send a message if it is a leaf or if it has received 
messages from all of its neighbours that are further 
away from the root. Distributing evidence involves 
sending message from the root to all other cliques. A 
clique is allowed to send a message if it has received 
one from its neighbour closer to the root (Cowell 
2005).  

Once evidence collection (Fig. 6) and distribution 
(Fig. 7) are completed, the posterior distributions 
can be obtained through marginalization and combi-
nation.  

 
Figure 6. The procedure for collecting evidence 

 
Figure 7. The procedure for distributing evidence 

4 RESULTS 

Table 1.The initial results without evidence 

Parameter Mean Varia-
tion 

Correspond-
ing variable 

Correspond-
ing value 

S1 -0.8 0.08 PGA 1.58 × 10-1 
S2 -1.13 0.08 PGA 7.41 × 10-2 
OLS1 -2.77 1.26 Pa1 2.80 × 10-3 
DLS1 -3.25 1.26 Pa2 5.77 × 10-4 
LLS1 -3.71 1.26 Pa3 1.04 × 10-4 
CLS1 -4.16 1.26 Pa4 1.59 × 10-5 
OLS2 -4.13 1.26 Pb1 1.81 × 10-5 
DLS2 -4.60 1.26 Pb2 2.11 × 10-6 
LLS2 -5.07 1.26 Pb3 1.99 × 10-7 
CLS2 -5.52 1.26 Pb4 1.70 × 10-8  
 
Table 2.The updated results given evidence OLS2=2 
Parame-
ter Mean Variation Correspond-

ing variable 
Correspond-
ing value 

M 6.16 0.20 M 6.16 
S1 -0.51 0.08 PGA 3.09 × 10-1 
S2 0.42 2.45 × 10-3 PGA 2.63 
OLS1 -1.49 1.21 Pa1 6.81 × 10-2 
DLS1 -1.96 1.21 Pa2 2.50 × 10-2 
LLS1 -2.43 1.21 Pa3 7.50 × 10-3 
CLS1 -2.88 1.21 Pa4 2.00 × 10-3 
OLS2 2 0 Pb1 1 
DLS2 1.53 0 Pb2 9.37 × 10-1 
LLS2 1.06 0 Pb3 8.55 × 10-1 
CLS2 0.61 0 Pb4 7.29 × 10-1  

First, suppose no evidence is observed, the initial 
distributions of variables are shown in table 1. 

Table 1 gives the mean value and variation for the 
conceptual parameters in the framework, and then 
the conceptual parameters are converted into the 
physical variables. For example, the parameter S1 in 
the framework means the logarithmic value of PGA 
in bridge A, so the value of the corresponding vari-
able is: PGA=10S1=10-0.8=0.1585g. 

So the initial probabilities of bridge A exceeding 
the various limit states are: Φ(-2.77) = 2.80 × 10-3 
for operational limit state; Φ(-3.25) = 5.77 × 10-4 for 
damage control limit state; Φ(-3.71) = 1.04 × 10-4 
for life safety limit state; Φ(-4.16) = 1.59 × 10-5 for 
collapse limit state. 

Suppose that bridge B is observed to exceed the 
operational limit state. Because in this framework 
we use Φ(OLS2) as the probability of bridge B ex-
ceeding the operational limit state, Φ(OLS2)=1. 
Since Φ(2) =0.9772, we can use value 2 as the evi-
dence value of OLS2. The results are given in table 
2. After given evidence OLS=2, the updated prob-
ability of bridge A exceeding the various limit states 
are: Φ(-1.49) = 6.81 × 10-2 for operational limit 
state; Φ(-1.96) = 2.50 × 10-2 for damage control 
limit state; Φ(-2.43) = 7.50 × 10-3 for life safety 
limit state; Φ(-2.88) = 2.00 × 10-3 for collapse limit 
state. 



From table 2, we can see that after observing 
bridge B reaching the operational limit state, the 
probability that bridge A exceeds the operational 
limit state has increased from 0.0028 to 0.0681. The 
mean value of magnitude M has increased from 5.00 
to 6.16, so the earthquake is expected to be of larger 
magnitude than the original assumption; and the 
seismic intensities at bridges A and B are expected 
to be 0.309g and 2.63g, larger than the original val-
ues 0.1585g and 0.0741g.  

5 CONCLUSIONS AND FUTURE WORK 

A framework for seismic vulnerability assessment is 
introduced. Given the seismic probability of one 
bridge, this framework can update the probability of 
another similar bridge. The results can be used for 
post-earthquake decisions.  

However, it is important to keep in mind the lim-
its of this framework. The first is related to the ca-
pacity model. In this paper, the capacity is assumed 
to arise from the bridge bearings. When the bridges 
are seated on strong bearings with weak piers, the 
capacity is assumed that of the piers. In this case, the 
capacity model will be more complex. Also, the 
variation of capacity factor must be based on em-
pirical data. The second limit is the limitation of the 
computation scheme used in this paper; it can only 
deal with conditional Gaussian Bayesian networks, 
where all the continuous variables must follow 
Gaussian distribution and the discrete variables can-
not have continuous parents. The last limitation is 
the distribution of magnitude. In this paper, the mo-
ment magnitude M is assumed to follow normal dis-
tribution, which may cause error in reality. In Kang 
et al. (2008), M is assumed to follow a truncated ex-
ponential distribution. We acknowledge that the 
truncated exponential distribution is more reason-
able, but we assume Gaussian distribution for com-
putation purposes. 

Before applying the framework to reality, there 
are several issues that need to be addressed. These 
include:  

(1) A computation scheme that has no restriction 
on the construction of BN is required. In the compu-
tation scheme used in this paper, all the variables 
must follow Gaussian distribution and discrete vari-
ables cannot have continuous parents. These two 
constraints limit the framework construction. Once 
these constrains are removed, the variable OLS1 can 
be replaced directly with a discrete variable which 
has two states: bridge A exceeds the operational 
level and bridge A does not.  

(2) A more refined framework is required. In this 
paper, only two bridges are considered. In the next 
step, we will generate a more sophisticated model 
including the response of all the elements within the 

roadway network, such as roads, tunnels and retain-
ing walls. 

ACKNOWLEDGEMENTS 

This research was made possible thanks to the fi-
nancial support of the Italian Ministry of Education 
(contract # PRIN_ 2007JHK33Y_002) and by the 
Autonomous Province of Trento. The authors wish 
to thank the APT Department of Transportation, and 
specifically Raffaele De Col, Luciano Martorano, 
Stefano De Vigili, Guido Benedetti, Paolo Nicolussi 
and Matteo Pravda. The authors also acknowledge 
in particular the contributions by David Capraro, 
Giovanni Cortese, Alessandro Lanaro, Devis Sonda 
and Paolo Zanon. 

REFERENCES 

Basöz, N. & Mander, J.B. 1999, Enhancement of the Highway 
Transportation Lifeline Module in HAZUS, Final Pre-
Publication Draft (#7) prepared for the National Institute of 
Building Sciences, March 31, 1999. 

Bensi, M.T., Der Kiureghian, D. & Straub, D. 2009. A Bayes-
ian Network Framework for Post-earthquake Infrastructure 
System Performance Assessment. Lifeline Earthquake En-
gineering in a Multihazard Enviroment. 

Cowell, R. G. 2005. Local Propagation in Conditional Gaus-
sian Bayesian Networks. Journal of Machine Learning Re-
search 6 (2005) 1517-1550. 

Federal Emergency Management Agency (FEMA). 2003. 
Multi-hazard Loss Estimation Methodology (Earthquake 
Model). HAZUS-MH MR3. Technical Manual. Washing-
ton, D.C. 

Hansen, A.F. 2000. Bayesian networks as a decision support 
tool in marine application. Ph.D. Dissertation, Technical 
University of Denmark, Department of Naval Architecture 
and Offshore Engineering. 

Jensen, F.V. & Nielsen, T.D. 2007. Bayesian Networks and 
Decision Graphs (Second edition). Springer Verlag 2007.  

Joyner, W. B & Boore, D. M. 1981. Peak horizontal accelera-
tion and velocity from strong-motion records including re-
cords from the 1979 imperial valley, California, earth-
quake. Bulletin of the Seismological society of America, 
Vol, 71, No.6, pp2011-2038. 

Kang, W. H., Song, J., & Gardoni, P. 2008. Matrix-based sys-
tem reliability method and applications to bridge networks. 
Reliability engineering and system safety 93 (2008) 1584-
1593. 

Lauritzen, S.L. & Jensen, F. 2001. Stable local computation 
with conditional Gaussian distributions. Statistics and 
Computing, 11:191-203. 

Nielson, B.G. 2005. Analytical fragility curves for highway 
bridges for moderate seismic zones. Ph.D. Dissertation, 
Georgia institute of technology, Atlanta, GA. 

Nishijima, K., Maes, M. A., Goyet, J., & Faber, M. H. 2009. 
Constrained optimization of component reliabilities in 
complex systems. Structural Safety 31 (2009) 168-178. 

Shinozuka, M., Grigoriu, M., Ingraffea, A.R., Billington, S.L., 
Feenstra, P., Soong, T.T., Reinhorn, A.M. & Maragakis, E. 
2000. Development of Fragility Information for Structures 
and Nonstructural Components. Techinical Report 
MCEER-00-SP01. 



Straub, D. 2005. Natural hazards risk assessment using Bayes-
ian networks. Safety and Reliability of Engineering Systems 
and Structures (Proc. ICOSSAR 05, Rome), Augusti et al. 
(eds), Millpress, pp. 2535-2542. 

Straub, D., Bensi, M. & Der Kiureghian, A. 2008. Spatial 
Modeling of Earthquake Hazard and Infrastructure Per-
formance Through Bayesian Networks. Proc. EM’08, Uni-
versity of Minnesota, Minneapolis. 

Straub, D. & Grêt,-R. A. 2006. A Bayesian probabilistic 
framework for avalanche modelling based on observations. 
Cold Regions Science and Technology, 46(3), pp. 192-203.  

Straub, D. & Schubert, M. 2008. Modelling and managing un-
certainty in rock-fall hazards. Georisk, 2(1), pp. 1-15. 

Yue,Y., Zonta, D., Bortot, F. & Zandonini, R. 2010. "Assess-
ment of the operation level of a bridge network in post-
earthquake scenarios". Proc. "5th International Conf. on 
Bridge Maintenance, Safety and Management ", Philadel-
phia, 11-15 Jul 2010. 


