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Abstract: To perform a realistic reliability analysis of
a complex cable-stayed steel footbridge subject to natu-
ral hazard and corrosion, this article addresses a ratio-
nal process of modeling and simulation based on iden-
tification, model updating, and validation. In particular,
the object of this study is the Ponte del Mare footbridge
located in Pescara, Italy; this bridge was selected as be-
ing a complex twin deck curved footbridge because it
is prone to corrosion by the aggressive marine environ-
ment. With the modeling and simulation objectives in
mind, a preliminary finite element (FE) model was re-
alized using the ANSYS software. However, uncertain-
ties in FE modeling and changes during its construction
suggested the use of experimental system identification.
As a result, the sensor location was supported by a pre-
liminary FE model of the footbridge, although to dis-
criminate close modes of the footbridge and locate iden-
tification sensor layouts, Auto Modal Assurance Crite-
rion (AutoMAC) values and stabilization diagram tech-
niques were adopted. Modal characteristics of the foot-
bridge were extracted from signals produced by ambi-
ent vibration via the stochastic subspace identification
(SSI) algorithm, although similar quantities were iden-
tified with free-decay signals produced by impulse ex-
citation using the ERA algorithm. All these procedures
were implemented in the Structural Dynamic Identifica-
tion Toolbox (SDIT) code developed in a MATLAB
environment. The discrepancies between analytical and
experimental frequencies led to a first update of the FE
model based on Powell’s dog-leg method that relied on
∗To whom correspondence should be addressed. E-mail: Oreste.
Bursi@ing.unitn.it.

a trust-region approach. As a result, the identified FE
model was capable of reproducing the response of the
footbridge subject to realistic gravity and wind load con-
ditions. Finally, the FE was further updated in the modal
domain, by changing both the stationary aerodynamic
coefficients and the flutter derivatives of deck sections to
take into account the effects of the curved deck layout.

1 INTRODUCTION

1.1 Background and motivation

Cable-stayed bridges (CSBs) and footbridges (CSFs)
have gained much popularity in the last few decades,
because their advantages have become generally known
worldwide (Swensson, 2012; Strasky, 2011). These ad-
vantages can be summarized as follows: (1) deck bend-
ing moments are greatly reduced by load transfer to the
stay cables; (2) ease of construction due to the same
flow of forces present during free-cantilever construc-
tion stages as after completion; (3) inherent stiffness of
cable-stayed bridges is greater than that of suspension
bridges, because especially for longitudinally eccentric
loads, the main cables of a suspension bridge find a
new equilibrium configuration without increase of ca-
ble stresses, whereas stay cable stresses always increase
under new loads; (4) eigenfrequencies of cable-stayed
bridges, including the torsion frequency which are im-
portant for the aerodynamic safety against flutter, are
significantly higher than those of suspension bridges.

Nowadays, the economic main cable-stayed span
ranges between 100 m with one tower and 1,100 m
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with two towers. Some examples include (1) the Lerez
Bridge (Troyano et al., 1998) with a single inclined
tower; (2) the Safti link bridge (Brownjohn and Xia,
2000) characterized by a curved deck and a single off-
set pylon; and (3) twin curved deck bridges (Gentile
et al., 2004) and twin deck curved footbridges (Ceravolo
et al., 2012). Nonetheless, their complex shapes increase
difficulties in accurate structural modeling and simula-
tion; in addition, slender footbridges are very sensitive
to dynamic phenomena induced by wind and pedestrian
loadings, and this characteristic is made even worse by
their inherent scarce damping properties (Simiu and
Scanlan, 1996; Dallard et al., 2001). Due to these dy-
namic properties, they are often equipped with damper
devices and/or tuned mass dampers that bring the de-
sign complexity to an even higher level.

Hence, a valid/reliable finite element (FE) model of
a cable-stayed footbridge is typically required to per-
form sensitivity studies, simulating the actual behavior
under extreme winds and/or traffic loading; to carry out
checks following high cycle fatigue loads due to traf-
fic; to predict their reliability during their life span, for
maintenance and repair planning (Khelifa and Gues-
sasma, 2013).

Along these lines several studies used the ANSYSTM

software (ANSYS, 2007) to set up FE models and ana-
lyze CSB case studies (Brownjohn and Xia, 2000; Mag-
alhães et al., 2008). This software uses the Ansys Para-
metric Design Language (APDL) tool that makes it
convenient for large structures. Structural System Iden-
tification and relevant test design, see Adeli and Jiang
(2006) among others, is challenging for complex CSBs.
They can show several coupled and close modes that
require special methods such as Auto Modal Assur-
ance Criterion (AutoMAC) and stability diagram tech-
niques, to discriminate between modes and to design
sensor locations (Allemang, 2002; Carden and Brown-
john, 2008; Hazra et al., 2012). Techniques that help
in deriving model properties from vibration data and
show changes in structural properties with time, are
both the eigenvalue realization algorithm (ERA) and
the stochastic subspace identification (SSI) procedures
(Juang and Pappa, 1984; Van Overshee and De Moor,
1996), and also more recently adopted time–frequency
techniques (Ceravolo, 2009; Ceravolo et al., 2012; Hazra
et al., 2012).

Due to limitations of FE modeling applied to complex
structures, we know that FE models can be improved
using experimental data from the identification process.
In this respect, model updating approaches based on
sensitivity (Brownjohn and Xia, 2000; Moaveni et al.,
2009) and Powell’s dog-leg (DL) techniques (Molinari
et al., 2009; Savadkoohi et al., 2011) have shown advan-
tages. The updated FE model of CSBs should be vali-

dated under typical load conditions. The case of CSBs
subjected to wind loads requires special consideration
owing to aerodynamic phenomena; therefore, correct
modeling of both stationary aerodynamic coefficients
and flutter derivatives is needed. Although some au-
thors adopt values relevant to aerodynamic coefficients
from bridges with similar deck sections, see for instance
He et al. (2007), it is certainly more appropriate to de-
fine aerodynamic coefficients directly from wind-tunnel
tests (Zasso et al., 2009). The problem of deck curvature
should also be considered, but the available literature is
limited (Zhu et al., 2002a,b).

1.2 Scope

Though several papers treat special aspects of modeling
and simulations of CSBs and CSFs, there are still mar-
gins of improvement to some aspects of FE modeling,
identification, model updating, and validation of com-
plex curved cable-stayed steel footbridges.

Moreover, for such bridges, reliability analyses based
on FE models under severe wind loads and steel cor-
rosion are rare. These effects were the target of the
research project HITUBES funded by the European
Union (Bursi and Kumar, 2011). In particular, such is-
sues represent basic aspects of footbridge analysis and
are the subject that this work explores further, although
the relevant reliability analysis will be presented af-
terward. This article follows the flowchart of Figure 1,
which summarizes the conceptual step sequence aimed
at obtaining an updated FE model of a cable-stayed
bridge/footbridge validated for dynamic simulations; it
is organized as follows. First, Section 2 contains a brief
description of both the case study and the preliminary
FE model, built with the ANSYS software. Second, Sec-
tion 3 provides information on identification techniques
and relevant results. The FE model updating of the foot-
bridge is presented in Section 4 on the basis of modal
frequency data. Furthermore, Section 5 describes the
implementation of aerodynamic properties on an ac-
curate FE model based on experimental aerodynamic
characteristics. Then, the validation of the resulting en-
hanced FE model is presented in Section 6 through time
history analyses accounting for turbulence and skewed
wind. Last, conclusions are drawn and summarized.

2 THE CASE STUDY PONTE DEL MARE

2.1 Description of the case study

The Ponte del Mare CSF is located in Pescara at the
mouth of the Pescara River close to the sea, in the cen-
ter of Italy. The bridge has two curved decks sustained
by cables connected to a tilted mast. The outer deck is
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Fig. 1. Conceptual step sequence of FE model updating
aimed at producing FE models of cable-stayed bridges and

footbridges suitable for dynamic simulations.

for pedestrians and the inner is for cyclists; both decks
have constant radius, of approximately 80 m and 100 m,
and their lengths are 173 m and 148 m, respectively. The
two decks are spatial steel-concrete trusses connected to
two prestressed concrete access ramps. The two sections
of the footbridge are shown in Figure 2a. The mast is
of steel filled with concrete and rises between the foot-
track and the cycle-track decks, with inclination about
11° with respect to the vertical; two cables anchor the
top of the mast to the ground. Due to the mast location
within decks, see Figure 3a, and the relevant eccentrici-
ties ef and ec of typical vertical loads Wf and Wc, see Fig-
ure 2a, overturning moments arise on both decks equi-
librated by horizontal forces H2,f and H2,c, respectively.
According to Figure 2b, the bottom chord of the foot-
track deck fixed at both abutments and subject to hori-
zontal forces H2,f, experiences a tensile force T̄2,f owing
to curvature effects. As a result, both bottom and top
chords of decks are subjected to axial loads of opposite

Fig. 2. The Ponte del Mare footbridge: (a) free body
diagrams of both foot-track and cycle-track decks; (b)

curvature effect on the bottom chord of the foot-track deck.

sign. For instance, the bottom chord of the foot-track
deck is subject to tensile loading while that of the cycle-
track deck is subject to compressive loading. The oppo-
site trend happens for top chords (Ceravolo et al., 2012).

To ensure safety requirements under premature
aeroelastic instability owing to wind and to mitigate
pedestrian vibration, the bridge was provided with a
passive control system. It is based on viscous fluid
dampers and aimed at providing positive damping, al-
though limiting changes both in modal frequencies and
shapes. The design included eight devices all endowed
with viscous fluid damping and some with spring in se-
ries; in particular, three damper types, A, B, and C, with
differing parameter values as listed in Table 1, were in-
stalled at the locations shown in Figure 3a. Dampers of
types B and C are illustrated in Figures 3b and c.

The footbridge was monitored for a year and a half
from December 2009, with the distributed sensor system
defined in Figure 4. The monitoring system consisted
of eight accelerometers, four resistance thermometers,
and two anemometers.

During one of the more extreme events, on Decem-
ber 25, 2009, accelerations were recorded owing to NS
wind excitation from the sea. Accelerations reached 0.4
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Fig. 3. (a) Passive control system; (b) damper type B;
(c) damper type C.

Table 1
Damper characteristics

Damper A Damper B Damper C

Type Elastic-viscous Elastic-viscous Viscous
Units 2 2 2+2
Damping

constant
128.0 kNs/m 349.0 kNs/m 794.2 kNs/m

Spring
stiffness

127.6 (±5%)
kN/m

127.6 (±5%)
kN/m

-

m/s2 at the foot-deck track although at the top of the
mast the maximum wind speed recorded was 28.0 m/s.

2.2 The preliminary FE model of the footbridge

The high geometrical complexity of the Ponte del
Mare footbridge characterized by 3D bending/torsional
coupled modes of decks and cable–deck interaction,
prevented the setup of a simplified FE model; as a result
an accurate 3D FE model was needed. This refined

Fig. 4. Structural health monitoring system.

Fig. 5. (a) First mode shape; (b) second mode shape.

model also served for the footbridge check under high
cyclic fatigue loads caused by pedestrians and wind
(Bursi and Kumar 2011). As a result and in agreement
with step 1 of Figure 1, a preliminary FE model shown
in Figure 5, and composed of 27,093 degrees of freedom
(DoFs), was developed in the ANSYS software (2007).
Beam, shell, and solid elements were used to model
accurately both the main steel-concrete decks and the
access ramps taking into account only geometrical
nonlinearities. In greater detail, the two decks’ trusses
and the piers, ramps, mast, and rigid connections were
modeled using BEAM44 elements. To avoid free
vibration solutions dominated by cable-stayed modes,
each cable was reproduced with a single geometrically
nonlinear LINK8-3D truss element (Brownjohn and
Xia, 2000); Moreover, variations in axial stiffness owing
to tensile loading were taken into account by means
of Dischinger equivalent elastic moduli (Bruno et al.,
2008). The two concrete slabs were modeled by means
of SHELL63 elements. Each concrete block at the ends
was modeled with SOLID45 elements. The dampers
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Table 2
Numerical frequencies predicted by ANSYS preliminary FE

model

Frequency
Mode fN (Hz)

1 0.681
2 1.003
3 1.087
4 1.144
5 1.369
6 1.518
7 1.546
8 1.666
9 1.702

were modeled with ideal linear viscous COMBIN14
elements. The first nine frequencies provided by modal
analysis are shown in Table 2, although for brevity,
only two corresponding first- and second-mode shapes
can be observed in Figure 5. From Table 2, we see how
some frequencies are close; although the mode shapes
show that the footbridge exhibits complex behavior ow-
ing to coupling between bending and torsion, especially
for the second mode.

This preliminary FE model set without dampers was
used (1) to design the damper system; (2) to design
sensor test setups for identification tests described in
Section 3.2.

3 STRUCTURAL SYSTEM IDENTIFICATION

3.1 Design of identification test setups

To ensure a reliable identification of the footbridge dy-
namic properties, a sensor location design was thought
necessary in accordance with step 2 of Figure 1. This
design was supported by the preliminary FE ANSYS
model of the footbridge without dampers devised in
Section 2.2. Due to the complexity of the footbridge

to be identified, test setups were designed in view of
mode decoupling. To this aim, a number of viable sen-
sor configurations were generated and AutoMAC ma-
trices were produced for the first 10 modes of the FE
model and for each setup (Allemang, 2002). In this re-
spect, see Figure 6, setups were then selected on the ba-
sis of an AutoMAC-based rule; in detail, for each set-up
k a score Rk was defined as the out-of-diagonal average
modal assurance criterion (MAC) value of Equation (1)
where i and j indicate the eigenmodes of the reference
FE model respectively, while n is the number of modes
considered for the score calculation:

Rk =

n∑
i

n∑
j, j �=i

MAC(i, j)

n · (n − 1)
(1)

The MAC value adopted in Equation (1) is a coeffi-
cient analogous to the correlation coefficient in statistics
or coherence in signal processing. It compares ordinates
of mode shapes from the FE reference model and exper-
imental data and provides a unit value for perfect cor-
relation and zero for uncorrelated orthogonal modes. It
reads

MAC(φa, φe) =
(
φT

a φe
)2

(φT
a φa) · (φT

e φe)
(2)

where φa and φe are analytical and experimental mode
shape vectors, respectively. The superscript T denotes
the transpose. The score Rk was assumed to be a mea-
sure of decoupling. The six lowest Rk setup scores se-
lected for experimental tests are listed in Table 3: (1)
String setups, see Figure 6a, were intended to capture
out-of-plane transverse and vertical modes; (2) Dec se-
tups, see Figure 6b, captured modes characterized by
the greatest decoupling; and (3) Carpet setups were de-
vised to identify single deck torsional modes. In addi-
tion, the permanent monitoring setup of Figure 4 de-
scribed in Section 2.1 was used.

Fig. 6. Experimental setup for system identification tests.
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Table 3
Rk scores of the selected six setups

Setup Rk

String 1 (ST1) 0.1272
String 2 (ST2) 0.2065
Carpet 1 (CP1) 0.1436
Carpet 2 (CP2) 0.2292
Dec 1 (DC1) 0.1250
Dec 2 (DC2) 0.1095

Therefore, it was possible to assemble identified
eigenmodes derived from the different setups and ac-
quired at different stages.

The optimal sensor setups were finally validated by a
blind test consisting of a fictitious identification proce-
dure based on numerical response signals. This valida-
tion procedure was essentially a numerical simulation of
the test campaign. Signals were generated by means of
the FE ANSYS model of the footbridge and white noise
excitation was simultaneously applied to all three direc-
tions. A total of 8,000 sample length 16-channel accel-
eration signals were produced considering only the su-
perposition of the first 10 eigenmodes of the system; the
maximum frequency, i.e., 1.984 Hz of the tenth mode,
was very small with respect to the sampling frequency
fs = 64 Hz. The Newmark method with γ = 1/2 and
β = 1/4, i.e., the trapezoidal rule (Newmark, 1959), was
used to integrate in time the semi-discrete system of
equations of motion. The effectiveness of the decou-
pling achieved by the DC1 setup with respect to the
two modes coupled at about 1.50 Hz, see Table 2, can
be grasped by means of the Welch transform (Welch,
1967). In detail, Welch Power Spectral Densities (PSDs)
of acquisitions generated by means of the FE model rel-
evant to the ST1 setup, see Figure 7a, are compared with
the corresponding spectra provided by the setup DC1
shown in Figure 7b.

Peaks in spectral energy distribution, corresponding
to the coupled modes at 1.518 and 1.546 Hz, appear
more distinct in the case of the DC1 setup.

The identification procedure was carried out adopting
the SSI algorithm (Van Overschee and De Moor, 1996).
Time history signals provided by the aforementioned
trapezoidal rule were downsampled up to 8 and seg-
mented in 10 frames for each one. A subsequent identi-
fication session was carried out on each of the 10 frames
of about 6,000 samples of length; a system order range
between 10 and 20 was considered. For each signal a sta-
bilization diagram was produced using the following sta-
bilization criteria: (1) a variation in natural frequency of
less than 2%; (2) a variation in damping less than 1%;
(3) a MAC value equal or greater than 0.95. A typical
stabilization diagram is shown in Figure 8.

Fig. 7. Welch PSD of the acquisitions generated by means
of the FE model relevant to (a) the

setup ST1; (b) the setup DC1.

Then, cluster diagrams were defined as depicted in
Figure 9 (Carden and Brownjohn, 2008); thus, each of
the six set-ups were proven to be effective in terms
of decoupling capabilities with respect to the couples
of eigenmodes at about 1.50 and 1.70 Hz of Table 2.
Along this line, all the first 10 modes of the footbridge
FE model were clearly identified; as a result, the pro-
posed setups were employed for the testing campaign
described here.

3.2 Identification techniques and results

With regard to identification foreseen in step 3 of
Figure 1, the SSI algorithm was used for signals
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Fig. 8. Stabilization diagram relevant to the acquisition of
setup ST1.

Fig. 9. Cluster diagram of the acquisition relevant to the
setup ST1: zoom on the range characterized by the presence

of coupled modes.

produced by environmentally induced vibration (Van
Overschee and De Moor, 1996), although the ERA was
used for free-decay signals generated by impulsive exci-
tation (Juang and Pappa, 1984). Only setups ST1, CP1,
and CP2 were exploited with fs = 100 Hz, greater than
the sampling frequency assumed for the blind test de-
scribed in Section 3.1. The first experimental campaign
of October 27 and 28, 2009 was conducted for the case
without dampers, while the second campaign of Oc-
tober 29 and 30, 2009 faced up the case of dampers.
The linear identification was carried out for both cases,
without and with dampers. Both the algorithms were
coded in the Structural Dynamic Identification Toolbox
(SDIT) code (Ceravolo and Abbiati, 2009, 2013), devel-
oped in a MATLAB environment (2003). In the case of
the Ponte del Mare bridge acquired signals were condi-
tioned by means of antialiasing filters, de-trended and

Fig. 10. Stabilization diagrams for the footbridge without
dampers relevant to the setup ST1.

subsampled (Ceravolo et al., 2012). After a preanaly-
sis with a Welch power spectral representation, several
time–domain identification sessions were carried out.
In greater detail, all signals coming from different ac-
quisitions were segmented and a large number of SSI
identification evaluations were performed. To eliminate
spurious eigenmodes, a cleaning criterion was adopted.
The set of mode shapes Vi = [ v1,i v2,i . . . vn,i ] gather-
ing identification outcomes from each segment ith for
different system order values was used to compute the
affinity matrix A, defined as{

Ai, j = 1, if MAC (vi , v j ) ≥ 0.95

Ai, j = 0, if MAC (vi , v j ) < 0.95
(3)

An index of recursion Ci relevant to the mode shape
vi was defined for each row of A, as

Ci =
n∑

j=1

Ai, j (4)

Mode shapes characterized by Ci > 5 were consid-
ered as true; the other ones were discarded as spurious.
The threshold value of the index of recursion Ci was
proportional to both the segmentation number and to
the system order range considered and, in addition, to
the quality of acquired signals. According to the blind
test based on the same stabilization criteria outlined in
Section 3.1, stabilization diagrams were used to clas-
sify true eigenmodes up to 2.5 Hz within identification
data sets purged from spurious modes. Stabilization di-
agrams relevant to the first 10 identified modes for the
case of the footbridge without dampers are reported in
Figure 10; in addition, Figure 11 depicts relevant cluster
diagrams for the same identification data set.



8 Bursi, Kumar, Abbiati & Ceravolo

Fig. 11. Cluster diagrams for the footbridge without dampers
relevant to setup ST1.

Fig. 12. Stabilization diagrams for the footbridge endowed
with dampers relevant to setup ST1.

Figures 12 and 13 show the stabilization diagrams and
the cluster diagrams, respectively, for the footbridge en-
dowed with dampers. Moreover, Table 4 gathers iden-
tification results in terms of eigenfrequencies and rel-
evant damping ratios, both for the footbridge without
and with dampers.

From Table 4 the reader will note the large frequency
discrepancy for the presence of dampers on the first vi-
bration mode.

In particular, we note that a more specific study con-
ducted in the time–frequency domain (Ceravolo, 2009)
confirmed on the one hand the results obtained from the

Fig. 13. Cluster diagrams for the footbridge endowed with
dampers relevant to setup ST1.

Table 4
Eigenfrequencies fX and relevant damping ratios in the cases

without and with dampers, respectively

Case w/o dampers Case with dampers

Frequency Damping Frequency Damping
Mode (Hz) ratio (%) (Hz) ratio (%)

1 0.748 1.10 0.92 3.22
2 1.065 1.32 1.08 3.20
3 1.126 1.40 1.34 4.84
4 1.243 1.10 1.27 2.89
5 1.394 1.46 1.44 2.14
6 1.510 1.80 1.55 2.96
7 1.716 1.34 1.73 3.59
8 1.791 1.65 1.80 4.89
9 2.306 1.20 2.43 4.13
10 2.364 0.94 2.53 2.63

SSI algorithm, and on the other, revealed that the foot-
bridge with dampers actually behaves like a threshold
system: (1) for low vibration levels, dampers are station-
ary, so that they act as constraints that stiffen the struc-
ture; (2) for high vibration levels, dampers become fully
active and, as required at the design stage, do not signifi-
cantly affect the main design frequency (Ceravolo et al.,
2012). Free-decay oscillations induced through a release
of masses were considered for the damping identifica-
tion by means of the ERA (Juang and Pappa, 1984).
Subsequent mode shapes relevant to the first identified
mode for the footbridge cases without and with dampers
are depicted in Figure 14.
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Fig. 14. Deformed shapes of the first six identified modes in the cases without and with dampers.

Table 5
Frequencies and damping ratios (%) of cable stays

Cable L(m) Frequency (Hz) ξ [%]

(a) Case w/o antivandalism sleeves and rubber pad

NE8 80.00 0.84 1.52 2.30 3.05 3.81 0.46
NE7 73.73 1.06 2.08 3.11 4.16 5.19 0.59
NE5 55.70 1.66 3.30 4.95 6.61 8.28 0.30

(b) Case with antivandalism sleeves and rubber pad

NE8 80.00 0.86 1.56 2.30 3.02 3.78 0.87
NE7 73.73 1.13 2.21 3.31 4.41 5.52 0.96
NE5 55.70 1.72 3.45 5.15 6.89 8.59 0.25

Fig. 15. Antivandalism cylindrical sleeve endowed with high
damping rubber and Teflon rings.

To optimize the dynamic performance of the deck
cable-stay system, the relevant interaction was inves-
tigated. In fact, possible motion coupling mechanisms
could occur (Liu et al, 2013). In this respect, specific dy-
namic tests were addressed to identify the modal char-
acteristics of the longest cable stays NE5, NE7, and
NE8. Table 5 summarizes the results of the dynamic
identification for the case without and with antivandal-
ism sleeves that are depicted in Figure 15.

Lower frequencies of the longest cables were found
to be close to the global eigenmodes of the bridge, in-
dicating linear one-to-one internal resonances. See, for
instance, the first frequencies of cables NE8 and NE7
and the first two footbridge frequencies in Table 4. To
break this undesired dynamic coupling, both damping
rubber and Teflon rings were installed in cylindrical an-
tivandalism sleeves on the longest cables as depicted in
Figure 15.

Both the two damping rubber half rings at the end
of the sleeve and the two Teflon half rings in contact
with cable introduced damping, limited stiffness, and in-
duced small impacts in bending. Each impact can re-
distribute the kinetic energy of the cable between dif-
ferent vibration modes. When a resonance builds up,
the proposed device triggers other vibration modes, and
thus it modifies the frequency content of the cable re-
sponse with a reduction of cable displacement ampli-
tude (Tirelli, 2010).

4 ACCURATE FE MODEL UPDATING BASED
ON EXPERIMENTAL DATA

Due to intrinsic and model uncertainties and changes
during construction, differences between numerical fre-
quencies fN,i, and experimental frequencies fX,i were ex-
pected. Hence, percentage errors between experimen-
tal modal analysis (EMA) and finite-element numerical
analysis (FEA) can be observed in Table 6. Thus and in
agreement with step 4 of Figure 1, a FE Model Updat-
ing (MU) was performed with initial model refinement
followed by a MU procedure (Brownjohn et al., 2001)
described below. Note that at this stage, the MU was ap-
plied to a FE footbridge model without dampers, which
were simulated later.
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Table 6
Comparison between experimental (fX,i) and numerical (fN,i)

frequencies for the footbridge w/o dampers

fX fN Error
Mode (Hz) (Hz) (%)

1 0.748 0.681 −8.8
2 1.065 1.003 −5.8
3 1.126 1.087 −3.5
4 1.243 1.144 −8.0
5 1.394 1.369 −1.8
6 1.510 1.518 +0.5
7 1.716 1.546 −9.9
8 1.791 1.666 −7.0
9 2.306 1.702 −26.2
10 2.364 1.984 −16.1

4.1 Macro updating of the FE model

Due to some changes at the construction phase, the fi-
nal structure diverged significantly from its initial de-
sign; hence, the initial FE model was modified to repre-
sent actual geometric and structural forms with as much
detail as possible. The major changes were (1) the use
of light-weight concrete in the cycle-track deck; (2) the
adoption of five different thicknesses of concrete in the
foot-track deck; (3) the addition of short and long steel
diagonal members in both decks. Moreover, the modi-
fied FE model considered some issues that were left out
in the initial model. In greater detail, consideration was
given to the contribution of the two concrete blocks at
the ends, the presence of steel sheeting beneath each
concrete slab, the section variation of the tubular mast
along its length owing to infill concrete, the mass of
metal plates at the joints between deck segments, and
a refinement of the FE model at the two end supports.
To perform the model tuning and avoid diverging pro-
cesses, we selected reasonable initial values of parame-
ters. Nevertheless, as shown in Table 7, the fX,i values
entailed by the modified FE model did not agree per-
fectly with the experimental results. Moreover, modal
inversions occurred and MAC estimates reached an av-
erage value of 65%. Thus, it was decided to apply an
optimization-based MU procedure defined in step 6 of
Figure 1.

4.2 Accurate FE model tuning

The FE-based MU procedure employed relied on the
inverse eigensensitivity method suggested by Friswell
and Mottershead (1995). This is an indirect iterative
method operating in the modal domain that, based
on the difference between each component, compares
numerical and experimental eigenproperties. Then, it

Table 7
Comparison between experimental (fX,i) and numerical (fN,i)

frequencies after model refinement

fX fN Error
Mode (Hz) (Hz) (%)

1X – 1N 0.748 0.697 −6.8
2X – 2N 1.065 1.000 −6.1
3X – 3N 1.126 1.059 −5.9
4X – 4N 1.243 1.132 −8.9
5X – 5N 1.394 1.378 −1.1
6X – 6N 1.510 1.529 +1.3
7X – 8N 1.716 1.692 −1.4
8X – 10N 1.791 2.079 +16.1
9X – 9N 2.306 1.955 −15.2
10X – 12N 2.364 2.337 −1.1

seeks to minimize this difference by adjusting unknown
parameters relevant to some significant structural prop-
erties of the FE model.

The matching procedure between numerical and ex-
perimental data was based on a least square minimiza-
tion problem of a real-valued scalar objective function
F(p), which is a nonlinear function of parameter vector
p. Therefore, given the difference vector �(p), a local
minimizer p* was sought for F(p), that reads

F(p) = 1
2
� (p)T · � (p) (5)

In greater detail, �(p) defined the difference be-
tween the experimental frequencies and their corre-
sponding numerical values (Zhou et al., 2013). Jaishi
and Ren (2005) observed that eigenvalue residual in
Equation (5) are enough for the optimal tuning of
modal parameters. Moreover, Friswell and Motter-
shead (1995) highlighted that the MAC index adopted
to compare shape data is not very effective when modes
are close in frequency, like the case to hand. Con-
versely, mode-shape-based comparison becomes cru-
cial for damage detection (Ching et al., 2006). To
achieve a minimum of F(p) in Equation (5), Powell’s
DL method with a trust region radius δ = 2 was ap-
plied. It is a trust region method, based on combina-
tion of the classical Gauss–Newton method and the
steepest descent method (Madsen et al., 2004). The
objective function is approximated within a trust re-
gion of magnitude depending on the solution at the
previous step. This MU procedure was successful in
other realistic applications; see, for instance, Savad-
koohi et al. (2011). However, to speed up the updating
of the bridge to hand, we implemented the MU proce-
dure by means of the ANSYS-APDL language script
(ANSYS, 2007).
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At the first stage of MU, we selected the main struc-
tural parameters that could influence the dynamic re-
sponse of the footbridge. The parameters selected were
the concrete elastic modulus Ec1; the lightweight con-
crete elastic modulus Ec2; the structural steel modulus
Es; the steel modulus of stay cables diameter 44 mm
Es stay 44; the steel modulus of 60 mm cables Es stay 60;
and the steel modulus of 75 mm cables Es stay 75. More-
over, we included both the concrete density ρ1 and the
lightweight concrete density ρ2, subject to significant
variation. The support bearing stiffness k was also con-
sidered and it was the only boundary condition updated.
In addition, each actual deck section had variable con-
crete thickness due to steel sheeting. Therefore, as each
deck was modeled by means of shell elements, to modify
their inertial properties, the coefficients CpB, CpC, CpD,
CpE, CpF, and Cc were defined. Step 6 of Figure 1 was
preceded by the sensitivity analysis of step 5 (Brown-
john and Xia, 2000); thus and to discard nonsensitive pa-
rameters, 15 modes and 15 parameters were considered.
The resulting 15 by 15 sensitivity matrix S was defined
as follows

Si j ≈ �i (p j + �p j ) − �i (p j )
�p j

(6)

where �i(pj + �pj) represents the residual on the ith
eigenvalue owing to a variation �pj on the jth parame-
ter. One can note from Equation (6), that each Sij term
of S was estimated by means of finite differences. Just
the following most sensitive nine parameters, i.e.,

Ec1, Ec2, Es, Es stay 44, ρ1, ρ2, CpB, CpD, Cc

were kept for the MU. The resulting sensitivity matrix
was then evaluated at each step of the iterative opti-
mization process, to calculate the descent direction of
the trust region method.

To guarantee physically meaningful estimations of
such parameters, variation limits were imposed with re-
spect to their initial values. In agreement with previous
works (Brownjohn and Xia, 2000), a maximum varia-
tion of ±15% was allowed for concrete elastic moduli
Ec1 and Ec2, while a ±5% was assumed for steel elas-
tic moduli Es and Es stay 44. A variation range of ±30%
was set for concrete densities ρ1 and ρ2. With reference
to geometric correction coefficients CpB, CpD, and Cc,
a ±15% variation range was set according to Zivanovic
et al. (2007). These variation limits represented an ade-
quate trade-off between engineering sense and robust-
ness of the optimization process. The accurate MU pro-
cess led to the estimations reported in Table 8.

In principle, an average increase of stiffness quanti-
ties together with a decrease of density characteristics
led to a positive shift of eigenvalues. Table 9 summa-
rizes MU results.

Table 8
Changes in selected parameters

Par. Initial value Final value p (%)

Ec1 35,000 MPa 38,350 MPa +957
Ec2 16,000 MPa 13,600 MPa −1500
Es 210,000 MPa 220,500 MPa +500
Es stay 44 165,000 MPa 156,750 MPa −500
ρ1 1,500 kg/m3 1,140 kg/m3 −2387
ρ2 2,500 kg/m3 1,750 kg/m3 −3000
Cc 25.40 27.91 +990
CpB 5.06 5.27 +413
CpD 1.15 1.15 −043

Table 9
Comparison between experimental (fX,i) and updated (fN,i)

frequencies after the MU

fX fN Error
Mode (Hz) (Hz) (%)

1X – 1N 0.748 0.738 −1.28
2X – 2N 1.065 1.048 −1.67
3X – 3N 1.126 1.099 −2.33
4X – 4N 1.243 1.179 −5.12
5X – 5N 1.394 1.437 +3.10
6X – 6N 1.510 1.608 +6.51
7X – 8N 1.716 1.761 +2.58
10X – 12N 2.364 2.435 +2.98
11X – 13N 2.512 2.502 −0.38

Table 10
MAC matrix between experimental and numerical mode

shapes after the FE MU

1X 2X 3X 4X 5X 6X 7X 10X 11X

1N 0.99 0.33 0.01 0.01 0.08 0.14 0.05 0.02 0.05
2N 0.00 0.42 0.01 0.11 0.07 0.00 0.07 0.07 0.07
3N 0.16 0.30 0.77 0.00 0.04 0.03 0.00 0.11 0.00
4N 0.08 0.00 0.04 0.95 0.12 0.11 0.27 0.02 0.00
5N 0.08 0.04 0.06 0.17 0.38 0.11 0.01 0.03 0.06
6N 0.08 0.07 0.00 0.02 0.00 0.88 0.15 0.00 0.01
8N 0.01 0.01 0.01 0.23 0.09 0.00 0.73 0.04 0.01
12N 0.08 0.11 0.10 0.01 0.02 0.10 0.00 0.60 0.27
13N 0.07 0.03 0.01 0.00 0.04 0.00 0.00 0.10 0.49

Note: MAC scores of corresponding mode pairs are highlighted in
bold.

One can observe that the percentage error on pre-
dicted frequencies was further reduced with respect to
the degree of matching obtained after the preliminary
refinement summarized in Table 7. Moreover, the val-
ues of the MAC matrix reported in Table 10 corrobo-
rate the eigenmode assignment.

In greater detail and with reference to the first eigen-
mode, an almost perfect matching in terms of both fre-
quency and mode shape can be appreciated.
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Fig. 16. Characteristic parameters of the bridge section and
definition of yaw angle θ.

5 ENHANCED FE MODEL FOR WIND
SIMULATIONS

To obtain a realistic FE model of the footbridge also ca-
pable of reproducing aerodynamic phenomena, it was
necessary to carry out step 7 and step 8 depicted in
Figure 1. The following subsections present in-depth
relevant analyses.

5.1 Characterization and modeling of aerodynamic
properties

It is widely agreed that long-span and/or slender bridges
are very prone to aerodynamic phenomena, i.e., self-
induced motion with increasing amplitude, caused by
relatively low wind speeds (Simiu and Scanlan, 1996);
these phenomena may induce aeroelastic instability like
flutter, galloping, etc. In view of both a stability analysis
and wind simulations, we define the static lift Ls(t), the
drag Ds(t), and the moment Ms(t) as

Ls(t) = 1
2
ρV 2 BLCL(α)

Ds(t) = 1
2
ρV 2 BLCD(α)

Ms(t) = 1
2
ρV 2 BLCM (α)

(7)

where V defines the mean wind speed, B and L the sec-
tion chord and the influence length, respectively shown
in Figure 16, ρ the wind density. CD(α), CL(α), CM(α)
represent the stationary aerodynamic coefficients, β1

the angle due to the footbridge geometry, β2 the wind
attack angle, and α the effective angle of attack as de-
picted in Figure 17.

In addition, the self-excited aerodynamic forces
Lse(t), Dse(t) and Mse(t) can be expressed as

Lse(t) = 1
2
ρV 2 BL

(
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V
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Fig. 17. Two-DoFs system and relevant angles. Static forces
and moment Ls(t), Ds(t), and Ms(t).

Dse(t) = 1
2
ρV 2 BL

(
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Mse(t) = 1
2
ρV 2 B2 L

(
−a∗

1
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V
− a∗
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iωBα
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+ a∗
4

π

2V ∗2

z

B
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iωy

V
+ a∗

6
π

2V ∗2

y

B

)
(8)

where ɷ defines the harmonic motion frequency and V*
= V/ɷB the reduced velocity. The dual kinematic quan-
tities are as follows: y, horizontal and normal to the
axis deck; z, vertical; α, torsional; h∗

1, h∗
2, h∗

3, h∗
4, h∗

5, h∗
6,

p∗
1 , p∗

2 , p∗
3 , p∗

4 , p∗
5 , p∗

6 , a∗
1 , a∗

2 , a∗
3 , a∗

4 , a∗
5 , a∗

6 , etc. are flut-
ter derivatives for lift, drag, and moment, respectively,
in agreement with Zasso (1996). The relationships be-
tween Zasso (1996), and Simiu and Scanlan (1996) con-
ventions read

− h∗
1 = H ∗

1

V ∗ ; −h∗
2 = H ∗

2

V ∗ ;h∗
3 = H ∗

3

V ∗2
;

h∗
4

π

2V ∗2
= H ∗

4

V ∗2
; −h∗

5 = H ∗
5

V ∗ ;h∗
6

π

2V ∗2
= H ∗

6

V ∗2
;

−p∗
1 = P∗

1

V ∗ ; −p∗
2 = P∗

2

V ∗ ;p∗
3 = P∗

3

V ∗2
;

p∗
4

π

2V ∗2
= P∗

4

V ∗2
; −p∗

5 = P∗
5

V ∗ ;p∗
6

π

2V ∗2
= P∗

6

V ∗2
;

−a∗
1 = A∗

1

V ∗ ; −a∗
2 = A∗

2

V ∗;
a∗

3 = A∗
3

V ∗2
;

a∗
4

π

2V ∗2
= A∗

4

V ∗2
; −a∗

5 = A∗
5

V ∗ ;a∗
6

π

2V ∗2
= A∗

6

V ∗2
; (9)

Due to the presence of hulls around the foot-track-
decks, see Figure 18 referring to scale models, and
the existing uncertainty in the definition of terms in
both Equations (7) and (8), wind-tunnel tests were
performed (Zasso et al., 2009), in agreement with
step 7 of Figure 1. Thus both stationary aerodynamic
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Fig. 18. Foot- and cycle-track decks located in a wind tunnel.

coefficients—CD(α), CL(α), CM(α)—and flutter
derivatives—a∗

i , h∗
i and p∗

i , i = 1, . . . , 6—could be
determined to fully characterize the aerodynamic
properties of track sections, as a function of α. To this
end, 1:5 scaled models of the two decks were tested in a
wind tunnel as illustrated in Figure 18.

To investigate the aerodynamic behavior of the decks
we measured the flutter derivatives over a wide range
of reduced velocities. In this respect and as an exam-
ple, Figure 19a shows the flutter derivatives h∗

1 as a func-
tion of V* for different mean angles of attack relevant to
the footbridge deck with wind from the sea. The reader
can see negative values of h∗

1 for realistic average at-
tack angles. This trend was expected since, as shown in
Figure 19b, the aerodynamic lift coefficient CL(α) ex-
hibited a negative slope near the origin. This inevitably
entails a galloping phenomenon associated with energy
absorption owing to self-excited oscillation. To imple-
ment the self-excited aerodynamic forces defined in
Equation (8), we used the generic Matrix27 FE element
available in the ANSYS software (ANSYS, 2007). As
a result, 60 Matrix27 elements, 30 per deck, were asso-
ciated with stiffness matrices and another 60 elements
with damping matrices defined in Equation (8).

For instance for the force Lse(t), stiffness terms
contained h∗

3, h∗
4, and h∗

6 flutter derivatives while
damping terms held h∗

1, h∗
2, and h∗

5 derivatives. To esti-
mate the critical wind speed, a stability analysis was con-
ducted. Thus, both static and aeroelastic forces defined
in Equations (8) and (9), respectively, were applied.
Initially, the worst case was considered, and therefore,
aeroelastic forces were applied orthogonally to the deck
axes, i.e., with a yaw angle θ = 0 in Figure 16. Nonethe-
less, both the structure spatiality and the variability of
the wind attack angle α were taken into account by
means of the 3D FE model. In fact, both the station-
ary aerodynamic coefficients and the flutter derivatives

Fig. 19. Aerodynamic characteristics of the foot-track deck:
(a) h∗

1 flutter derivative values for different wind attack
angles as a function of the reduced wind velocity V*;

(b) stationary aerodynamic coefficients CD, CL, and CM vs. α.

were set on the basis of the local value of α that de-
pended on the decks’ deformed shape under dead loads.
The wind design velocity was set equal to 40.4 m/s for
the case of wind from the sea. Structural damping was
assumed to be equal to ξ struc = 0.5%. As a result of
the stability analysis, the total damping ξ tot = ξ struc +
ξ aero became negative for the first mode shape at a wind
speed of about 24 m/s, as illustrated in Figure 20. This
trend confirmed the galloping instability of the foot-
track deck, found during wind-tunnel tests.

Thus, further analyses, with dampers, entailed damp-
ing values well above 2% for each mode, within
the design wind velocity of 40.4 m/s. Finally, the FE
model of the damped footbridge predicted accelera-
tion values within the Eurocode guidelines (EN 1990,
2002) for pedestrian comfort, i.e., 0.7 m/s2 for vertical
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Fig. 20. Total damping ξ tot as a function of the wind velocity
for the footbridge without dampers.

acceleration and 0.1 m/s2 for lateral acceleration, avoid-
ing lock-in effects.

5.2 Stochastic modeling of the turbulent component of
wind loading

The numerical simulation of the footbridge required
wind time histories necessarily including turbulent con-
ditions. In fact, the two decks are both subject to two
simultaneous wind components: the static and the tur-
bulent wind component. In particular, the turbulent or
buffeting load component was applied by Lift, Drag,
and Moment forces:

Lb (t) = 1
2
ρV (z)2 B{

2CL(α)
v′ (t)
V (z)

+
[
C

′
L|α(α) − CD(α)

] w′ (t)
V (z)

}

Db (t) = 1
2
ρV (z)2 B{

2CD(α)
v′ (t)
V (z)

+
[
C

′
D|α(α) − CL(α)

] w′ (t)
V (z)

}

Mb (t) = 1
2
ρV (z)2 B2

{
2CM (α)

v′ (t)
V (z)

+ C
′
M |α(α)

w′ (t)
V (z)

}
(10)

where ρ is the air density; u′, v′, and w′ define the sta-
tionary stochastic components with zero mean of the
turbulence; CL(α), CD(α), C(α) are the static coeffi-
cients; CL|α ′(α), CD|α ′(α), CM |α ′(α) are the buffeting co-
efficients; and V (z) is the mean velocity in the main-
stream direction defined by the Y axis in Figure 17. In
the turbulent boundary layer, the mean wind velocity

is assumed to be constant and has a logarithmic profile
defined as

V (z) = v∗ 1
k

ln
z

z0
(11)

where v∗ = √
τ0/ρ = 1.76 m/s defines the friction ve-

locity, τ0 is the shear stress at the ground surface and
ρ is the air density assumed 1.25 kg/m3; k is Von Kar-
man’s constant equal to 0.4; z is the height above ground
and z0 is the roughness length depending on terrain type
(Simiu and Scanlan, 1996; Dyrbye and Hansen, 1997).

If we assume the Cartesian reference system X, Y, Z,
with X along the deck axis, Y orthogonal to the X axis,
and Z in the vertical direction as depicted in Figure 17,
the 3D wind velocity components associated to a point
in space read

u (t) = u′(x, y, z, t)

v (t) = V (z) + v′(x, y, z, t)

w (t) = w
′
(x, y, z, t) (12)

The correlation among u′, v′, and w′ is assumed to be
weak and in practice can be omitted (Simiu and Scan-
lan, 1996); thus, three 1D multivariate stochastic un-
correlated processes can be assumed point-wise and a
multivariate wind field has to be generated. In this re-
spect Deodatis (1996) proposed a simulation algorithm
capable of generating stationary, multivariate stochas-
tic processes according to a defined cross-spectral
density matrix linked to a specific climatic zone (CNR-
DT 207/2008, 2008; EN 1191-1-4 2005). According to
Deodatis’ notation, a 1D multivariate Gaussian process
with zero mean can be characterized by the following
cross-spectral density function:

S0(ω) =

⎡
⎢⎢⎢⎣

S0
11(ω) · · · S0

1n(ω)

...
. . .

...

S0
n1(ω) · · · S0

nn(ω)

⎤
⎥⎥⎥⎦ (13)

where n is the number of simulation points; S0
j j (ω) =

Sj (ω), j = 1, . . . , n is the power spectral density func-
tion of the signal f j (t) to be generated although
S0

jk(ω) = √
Sj (ω)Sk(ω)γ jk(ω), j, k = 1, . . . , n is the cross

power spectral density function with γ jk(ω) coherence
function between f j (t) and fk(t). S0(ω) can be decom-
posed into the product of two triangular matrices with
Cholesky decomposition:

S0(ω) = H(ω)HT ∗(ω) (14)

where H(ω) is a lower triangular matrix and T ∗. defines
its complex conjugate transposed matrix. As the num-
ber N of frequency intervals is such that N → ∞, the
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Table 11
Numerical simulations analyzed for static and dynamic wind loads
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simulated stochastic process is asymptotically Gaussian
owing to the central limit theorem, so samples of the
simulated stochastic process can be expressed as

f j (t) = 2
√

�ω
j∑

m=1

N∑
l=1

∣∣Hjm(ωml)
∣∣ ·

cos (ωml t − θ jm (ωml) + ϕml) , j = 1, 2, . . . , n.

(15)

The Von Karman cross-spectral density function was
adopted both for the horizontal and the vertical compo-
nent of turbulence, for a return period TR = 500 years
(Dyrbye and Hansen, 1997). As a result, we considered

f Sv(z, f )
σ 2

v (z)
= 4nL(

1 + 70.8n2
L

)5/6
, nL = f Lv

V (z)
(16)

where f is the frequency in Hz; σ 2
υ (z) is the variance

of the turbulence component; nL is the nondimensional
frequency; Lυ is the height-dependent length scale of
turbulence. In particular, σ and L were taken from Na-
tional Standards (CNR-DT 207/2008). The coherence
function in nondimensional form used in Equation (17)
was taken from Dyrbye and Hansen (1997):

γ (�y, f ) = exp
(

−C
�y f

V

)
(17)

where C is a coefficient defined in CNR-DT 207/2008
(2008).

6 FE MODEL UPDATING ACCORDING TO THE
SKEWED WIND THEORY AND VALIDATION

Preliminary simulation based on the updated FE model
developed in Section 4.2 assigned both aerodynamic
and flutter coefficients orthogonal to footbridge decks.
Nonetheless, in reality the wind is not always a nor-
mal wind, and therefore, other assumptions were con-
sidered to carry out step 8 of Figure 1. In greater de-
tail, we analyzed the cosine rule (Tanaka and Daven-
port, 1982), the skew wind theory (Simiu and Scanlan,
1996), and their combinations. With regard to Equa-
tions (7), (8), and (9) of Section 5.1, coefficients for
both the static and the self-excited aerodynamic com-
ponent of drag, lift, and moment forces were consid-
ered as shown in Table 11. All analyses were performed
on the enhanced FE updated model defined in Sec-
tion 4.2; moreover, the analyses considered the worst
wind condition from the sea. Wind loads were applied
at specific points called aerodynamic nodes; there were
30 nodes per deck subject to three wind components
each. In greater detail, the three numerical simula-
tions (NSs) analyzed for the static components of Equa-
tion (7) are listed herein, and refer to parameters shown
in Table 11. (A) Wind orthogonal to the X axis of

Table 12
Critical velocity and frequency for different numerical

simulations

Description of NSs Vcr (m/s) fcr (Hz)

A Orthogonal
wind

- 24.41 0.7244

C Cosine rule
and skew
wind theory

Static and
dynamic
application
of the cosine
rule

28.33 0.7244

D Static
application
of the cosine
rule and
dynamic
application
of the skew
wind theory

26.84 0.7215

G Wind Y NS #1 26.50 0.7220
H NS #2 27.40 0.7230
I NS #3 26.50 0.7219

Note: Labels in column one refer to entries of Table 11.

each deck: in this NS the wind acted along the or-
thogonal direction, i.e., with a yaw angle θ = 0◦, see
Figures 16 and 17, and steady-state aerodynamic co-
efficients were the ones obtained during wind-tunnel
tests (Zasso et al., 2009). (C) and (D) NSs based on
the Cosine rule application: only the velocity compo-
nent normal to each deck X axis was taken into ac-
count, whatever the direction of the wind. This rule
entailed that given a particular wind distribution, only
the component V cos (θ) was considered effective; see
in this respect Figure 16 to understand convention for
angle θ . (G), (H), and (I) NSs based on wind in the
Y direction: steady-state aerodynamic coefficients were
considered for θ = 0◦, but they were referred to an
elongated section of width B ′, depicted in Figure 16.
Besides, the influence area for each concentrated load
varied as a function of θ . So we considered the seg-
ment of influence to be orthogonal to the line of flow,
i.e., L ′ = L cos θ . In a first step, only the static compo-
nent of the wind was applied and with reference to the
three NSs listed above, we can draw the following con-
clusions: (1) NS #1 and NS #2 showed some difference
with regard to displacement/rotation as a function of
the yaw angle θ . Maximum deviation was at the deck
center with 1.71 mm for displacement and 0.00458° for
rotation; (2) the footbridge response did not exhibit
high sensitivity to the static wind component. Along
the same line, a few NSs referring to wind components,
linked to aerodynamic action, were considered and are
listed here:
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Table 13
Percentage errors between experimental and numerical root mean square of acceleration signals

NS #1 NS #2 NS #3
Normal wind Cosine rule and skew wind Wind Y NS #2

August April August April August April

Accelerometer Err (%) Err (%) Err (%)

M1 121.60 136.64 71.94 115.13 119.31 174.05
M2 −4.80 −2.015 −20.49 −4.00 −7.58 11.40
M3 −3.66 9.74 −20.78 5.59 −5.26 26.17
M4 −6.58 10.26 −25.37 3.14 −8.80 25.81
M5 −0.45 41.05 −16.07 39.50 −1.81 63.27
M6 0.53 17.78 −16.70 14.41 −3.49 32.54
M7 −24.73 2.072 −34.90 3.70 −25.70 18.31
M8 21.256 48.30 −1.47 41.53 16.12 66.72

Note: Err refers to Equation (18).

A—Normal wind: wind acted with a yaw angle θ = 0◦

and aerodynamic coefficients determined during wind-
tunnel tests; the section width and the influence length
considered were B and L , respectively.

C—Application of the cosine rule to both components
of Figure 16, where we considered effective for both
static and dynamic response only the velocity compo-
nent defined by V cosθ .

D—Application of the cosine rule for the static wind
component and of skew wind theory for the dynamic
component; the assembly of aerodynamic matrices was
made in agreement with the Scanlan theory (Simiu
and Scanlan, 1996). Besides, Matrix27 elements were
arranged in the direction orthogonal to the deck X
axis, to take into account the self-excited wind com-
ponent capable of inducing rotation along that specific
direction.

G, H, I—Wind direction Y. In this situation, we con-
sidered three different NSs obtained from the combi-
nation of two static and two dynamic load types. With
regard to the static part: (1) we applied the cosine rule;
(2) we used static coefficients for θ = 0◦ but employed
both B ′ and L ′ dimensions. Conversely and with ref-
erence to the dynamic part: (1) we used flutter deriva-
tive coefficients according to the Scanlan theory, with
Matrix27 elements oriented along the Y direction; (2)
we considered flutter derivative coefficients for θ = 0◦

but referred to a reduced velocity V ′, with Matrix27
elements oriented along direction Y defined in Fig-
ure 17. Table 12 collects critical wind speeds related
to each NS considered. In detail, critical velocity Vcr

values correspond to galloping aerodynamic instabil-
ity; moreover, NS A entails the most conservative es-
timation of Vcr equal to 24.41 m/s. In the case of the
Pescara footbridge the yaw angle θ approaches values

of 54° close to the end. Experimental tests on the Ts-
ing Ma Bridge (Zhu et al., 2002a, b) showed that for a
low reduced velocity, approximately V ∗ < 8 ÷ 11, the
application of the skew wind theory provided results
very close to experimental values. Also the so-called
“Wind Y” NSs of Table 12 provided Vcr values always
greater than that in NS A. In particular, it is interest-
ing to compare NSs G and I. The difference between
G and I is in the assumptions related to application
of the static load component of Equation (7) although
the assembly of Matrix27 is the same. Results from nu-
merical investigation showed that Vcr,G = 26.50 m/s al-
though Vcr reached its maximum value of 28.33 m/s for
NS C and a minimum value of 24.41 m/s for NS A.

Therefore, we can conclude that the footbridge is sen-
sitive to galloping phenomena, but is not very sensitive
to the wind load application or to the direction in which
aerodynamic stiffness and damping matrices are active;
in addition, the skew wind theory seemed to provide the
best results.

The third part of the simulations involved buffeting
analyses with wind loads described by Equation (10).
In this respect Table 13 summarizes results provided
by three time history analyses from the FE model in
the ANSYS software (ANSYS, 2007), together with ac-
tual records of two wind events—August and April—
provided by accelerometers shown in Figure 4. In de-
tail, we considered two wind histories: (1) a history
recorded on August 29, 2010 between 00:48:31 and
00:58:47 characterized by V = 16.46 m/s; and (2) a his-
tory recorded on April 13, 2011 between 05:35:31 and
05:45:30 with V = 19.10 m/s. As a result, the interfer-
ence between pedestrian and wind loading was min-
imized. Percentage errors between experimental and



18 Bursi, Kumar, Abbiati & Ceravolo

Fig. 21. Assumptions of aerodynamic behavior as a function
of the yaw angle θ .

numerical root mean square (RMS) of acceleration sig-
nals were defined according to Equation (18):

Err = RMSnum − RMSexp

RMSexp
· 100 (18)

Results show an underestimation of acceleration data
from the FE model subjected to the August wind his-
tory and an overestimation when the model was subject
to the April wind, with the exception of the accelerom-
eters M1 and M8. This was mainly due to the different
direction of the actual wind histories and consequently

differing damper activation. In fact in terms of damp-
ing, the positive sign of errors on RMS means that the
FE model is less stiff than the actual bridge. The acceler-
ation trend, in correspondence with accelerometers lo-
cated near the access ramp, differs appreciably and is
overestimated. Moreover, for accelerometers M1 and
M8, located in the foot- and cycle-track decks respec-
tively, see Figure 4, NS #2 provides the smaller percent-
age error. In general, it can be concluded that results
for the wind history of August are sufficiently favorable,
as the error on RMS is always less than 26%, except for
the accelerometer M7 in NS #2. NS #1 is the closest to
recorded data in terms of errors on RMS. With regard to
the April wind history, recorded acceleration values are
overestimated, partly because the average wind speed
is higher than that of the August wind. Errors on RMS
referred to accelerometers M1 and M8 are high too.

The configuration that least overestimates M1 and
M8 accelerometers is NS #2; the error at accelerom-
eter M5, also located close to one end, is high. In
addition, errors on RMS show that for the wind of
April, NS #2 provides a better approximation of the
actual wind distribution. In sum, to better agree with
recorded data, we assumed a hybrid deployment of
steady-state coefficients and flutter derivatives as a func-
tion of the yaw angle θ according to Figure 21 and
Table 14.

This distribution will be further used for the FE
model to be employed in a reliability analysis after-
ward. Finally, the enhanced FE model provided by step
8 of Figure 1 could also permit one to check the role
of aerodynamic and aeroelastic effects not included in
the present study, e.g., vortex shedding or wake effects
(Cigada et al. 1997, Diana et al., 2006, Caracoglia et al.,
2009).

Table 14
Expressions for steady-state coefficients and flutter derivatives used

Deck Angle θ Static polar Flutter derivatives

Foot deck
−54.69◦ ≤ θ < −40◦

40◦ < θ ≤ 54.69◦ CD,L .M = CD,L ,M (α, 0) · cos2θ

A∗
i = A∗

1 (0, α, K ′) /cos2θ

H ∗
i = H ∗

i (0, α, K ′) /cos2θ

−40◦ ≤ θ ≤ 40◦ CD,L .M = CD,L ,M (α, 0)
A∗

i = A∗
1 (0, α, K )

H ∗
i = H ∗

1 (0, α, K )

Cycle deck
−36.56◦ ≤ θ < −30◦

30◦ < θ ≤ 36.56◦ CD,L .M = CD,L ,M (α, 0) · cos2θ

A∗
i = A∗

1 (0, α, K ′) /cos2θ

H ∗
i = H ∗

i (0, α, K ′) /cos2θ

−30◦ ≤ θ ≤ 30◦ CD,L .M = CD,L ,M (α, 0)
A∗

i = A∗
1 (0, α, K )

H ∗
i = H ∗

1 (0, α, K )
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7 CONCLUSIONS

To obtain a realistic FE model of the twin deck curved
cable-stayed Ponte del Mare steel footbridge, we have
presented a rational process of modeling and simulation
based on identification, model updating, and validation.
As a result, the modal characteristics of the footbridge
were properly extracted from signals produced by am-
bient vibration via the stochastic subspace identification
algorithm; although similar quantities were identified by
free-decay signals produced by impulsive excitation by
means of the ERA. The subsequent modal updating was
able to reproduce the response of the footbridge sub-
jected to realistic wind loading conditions. Moreover,
the FE was further updated in the time domain, by tak-
ing into account the effect of the curved deck layout
both on the flutter derivatives and on the stationary
aerodynamic coefficients of the deck sections. The anal-
ysis highlighted that for this Case Study, the Skew Wind
theory was appropriate at the two ends of the decks, al-
though the Normal Wind theory provided more realistic
results at the central parts of the two decks.
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