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SUMMARY

Real-time hybrid simulation represents a powerful technique capable of evaluating the structural dynamic
performance by combining the physical simulation of a complex and rate-dependent portion of a structure
with the numerical simulation of the remaining portion of the same structure. Initially, this paper shows
how the stability of real-time hybrid simulation with time delay depends both on compensation techniques
and on time integration methods. In particular, even when time delay is exactly known, some combinations
of numerical integration and displacement prediction schemes may reduce the response stability with
conventional compensation methods and lead to unconditional instability in the worst cases. Therefore, to
deal with the inaccuracy of prediction and the uncertainty of delay estimation, a nearly exact compensation
scheme is proposed, in which the displacement is compensated by means of an upper bound delay and the
desired displacement is picked out by an optimal process. Finally, the advantages of the proposed scheme
over conventional delay compensation techniques are shown through numerical simulation and actual tests.
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1. INTRODUCTION

1.1. Background and motivation

In the past two decades, much attention has been paid to real-time hybrid simulation (RHS), as a novel
technique able to evaluate the dynamic response of a structure [1–5]. In detail in RHS, the structure is
divided into a physical substructure (PS) and a numerical substructure (NS), respectively; the coupling
between the two parts is being handled by one or more numerical coordinators and physical transfer
systems, for example, actuators. Therefore, synchronization at the interface is extremely important
for accurate RHS. In this process, time delay is inevitable owing to the time spent during the
computation performed by the numerical coordinator and to a large extent by the actuation of the
physical transfer system. As a result, time delay reduces the response accuracy and in the worst case
causes instability of RHS.

Most research efforts to reduce the negative effect of time delay have focused on the development of
various compensation schemes for transfer systems. These schemes basically can be classified into two
types: (i) to send the command in advance and (ii) to add a compensator with positive phase, that is, a
lead compensator. In a hybrid simulation, the command sent to the PS is actually the calculated

*Correspondence to: Bin Wu, School of Civil Engineering, Harbin Institute of Technology, Haihe Road, No. 202, Harbin
150090, China.
†E-mail: bin.wu@hit.edu.cn

Copyright © 2013 John Wiley & Sons, Ltd.

EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS
Earthquake Engng Struct. Dyn. 2013; 42:1749–1765
Published online 23 April 2013 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/eqe.2296



response at the interface between PS and NS; therefore, it cannot be known a priori. As a result, a
response prediction is needed for the first type of compensation scheme. All available prediction
methods are based on polynomial extrapolations, among which the third-order Lagrange polynomial
proposed by Horiuchi and Konno for RHS is most widely applied [6]. Extrapolations based both on
constant and linear variation of acceleration were also applied; mathematically, they can be
classified as osculating polynomials, among which Lagrange and Hermite polynomials are two
special cases [7]. The effect of time delay can also be compensated for by force correction, on the
basis of polynomial curve fitting of measured data [8].

The ideal candidate among lead compensators is the compensator with adverse dynamics of the
transfer system, while feedforward and phase lead are more widely used in mechanical control [9].
To cope with the problems of noise sensitivity and uncertainty modeling, low-pass filter and
feedback control are combined with inverse dynamics [10, 11]. In this respect, Christenson et al.
[12] suggested a virtual coupling; in greater detail, the effect of a virtual coupling is essentially
equivalent to a first-order phase lead compensator with magnitude less than one.

In both these two types of compensation schemes, compensation effects could be impaired by the
assumption of fixed time delay or constant actuator dynamics because they vary during a test. As a
result, several online procedures for delay estimation and adaptive mechanisms capable of correcting
parameters associated with delay were proposed [8, 13–15]. Although these methods worked well
for certain situations, stability, robustness, and parameter design of the corresponding adaptive laws
represent significant issues that require further investigation.

1.2. Scope

A straightforward alternative to treat the uncertainty of delay estimation is the upper bound delay or
delay overcompensation because it entails an equivalent positive damping on the whole emulated
structure. To ensure dynamic stability, overcompensation was used by Wallace et al. [16] in their
adaptive delay compensation. However, the accuracy of RHS with overcompensation was reduced
because, as a result of overcompensation, the force fedback to the NS did not correspond to the
desired displacement. However, we underline that a nearly exact compensation could be achieved if
the force datum to be collected is not the one at the current time instant but the one corresponding
to the desired displacement, which can be chosen among overcompensated displacement data. Along
this line, we propose, in this paper, an upper bound delay compensation strategy for RHS that
entails a nearly exact compensation.

The reminder of this paper is organized as follows. Section 2 analyses problems that result
from conventional compensation methods, even when the time delay t is exactly known. Then,
Section 3 presents the basis of the nearly exact compensation method that relies on an upper
bound delay tc and an optimal feedback technique. In Sections 4 and 5, respectively, we
present numerical simulations and actual tests, to show the effectiveness of the proposed delay
compensation strategy. Finally, conclusions are drawn and necessary developments are
described in Section 6.

2. PROS AND CONS ON DELAY COMPENSATION TECHNIQUES FOR RHS

It was shown that time delay mainly due to actuator dynamics introduces negative damping into the
emulated system, whereas delay compensation entails positive damping in the low-frequency range
[17]. However, this conclusion is based on the assumption that the dynamic response computed for
the NS is exact. Apparently, the evaluated displacement response is affected by amplitude change
and period distortion, owing to the numerical time integration employed. Therefore, it is important
to re-examine the effect of delay compensation also considering the influence of time
integration algorithms. It is expected that different time integration methods combined with
displacement response predictions will entail different compensation effects. In greater detail,
we consider hereafter the following: (i) the time integration LSRT2 method suggested by Bursi
et al. [5]; (ii) four response prediction schemes based on the second-order and third-order
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Hermite extrapolations [7]; and (iii) both the explicit Newmark method and the linear acceleration
method [8]. The analysis of the explicit Newmark integration method combined with a linear
acceleration prediction is provided in Appendix 1.

With regard to the LSRT2 method, Bursi et al. proposed a two-stage Rosenbrock-based method to
perform RHS, which becomes dissipative in the high-frequency range of the response via a proper
choice of user-defined parameters [5]. It was named LSRT2 method because it is L-stable and real-
time compatible; that is, at the beginning of each time step, the LSRT2 method does not require
knowledge of the solution or its derivatives at the end of the time step. To apply the LSRT2
method, the system of equations of motion is written in the first-order form as

_y ¼ f y; tð Þ ¼ _x
r x; _x; tð Þ

� �
(1)

with

y ¼ x
_x

� �
; (2)

where x defines the displacement vector. In greater detail, the LSRT2 method entails

k1 ¼ I� gΔtJ½ ��1f yi; tið ÞΔt; yiþa21 ¼ yi þ a21k1; (3)

k2 ¼ I� gΔtJ½ ��1 f yiþa21 ; tiþa2

� �þ g21Jk1
� �

Δt; yiþ1 ¼ yi þ b1k1 þ b2k2; (4)

where Δt is the time integration interval, J is the Jacobian operator, and the recommended algorithmic
parameters read

g ¼ 1�
ffiffiffi
2

p

2
; a2 ¼ a21 ¼ 1=2; g21 ¼ �g; b1 ¼ 0; b2 ¼ 1: (5)

While the displacement predictions relevant to both the explicit Newmark method and the linear
acceleration method can be found in [8], the second-order and the third-order Hermite extrapolations
are given by

xðtiþ1 þ tcÞ
0 ¼ 1� �2

� �
xiþ1 þ �2xi þ � þ �2

� �
Δt

0
_xiþ1 (6)

xðtiþ1 þ tcÞ
0 ¼ 1� 3�2 � 2�3

� �
xiþ1 þ 3�2 þ 2�3

� �
xi þ � þ 2�2 þ �3

� �
Δt

0
_xiþ1 þ �2 þ �3

� �
Δt

0
_xi;

(7)

respectively, where x(ti+ 1 + tc)0 denotes the predicted displacement at (ti+ 1 + tc); tc and Δt0 define the
assumed upper bound time delay and time interval between two successive interpolation points,
respectively; and � denotes the ratio of tc over Δt0. When the actual delay t is known, tc=t. The
advantage of the Hermite extrapolation is that it can utilize the latest velocity information available
from the LSRT2 method, and hence, a more accurate prediction is expected. If t is precisely known,
then the compensation effect depends mainly on the prediction accuracy.

If we assume that Δt<< tc and the response of the NS is exact, then the prediction accuracy can be
evaluated through a frequency domain analysis [8, 18]. As a result, the frequency response plots of the
four different prediction methods are shown in Figure 1, with � = 1 and Ω0 =oΔt0, where o denotes the
signal circular frequency. The damping effect of the compensation process can be seen from the phase
plot: a positive phase angle indicates positive damping and vice versa. Positive damping results for
small Ω0 with all prediction methods herein, which is similar to polynomial extrapolation [8]. For
clarity, we define the stability margin [Ω0] such that positive damping results for all Ω0 ≤ [Ω0],
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whereas negative damping is exhibited for Ω0>[Ω0]. As a result, [Ω0]s read 1.58, 2.61, 1.05, and 1.59
for the second-order, third-order Hermite extrapolation, explicit Newmark, and linear acceleration
methods, respectively.

To realistically evaluate the effectiveness of the aforementioned delay compensation schemes in an
RHS, a spectral stability analysis was conducted on the undamped SDOF system shown in Figure 2. In
the figure, ke and kn define the stiffness of PS and NS, respectively, and mn is the assumed mass for the
NS. When the equation of motion of the SDOF system is written in the Hamilton form, f(y,t) of
Equation (1) is expressed as

f y; tð Þ ¼ _x
�kex

0 � knx
� �

=mn

� �
: (8)

By means of Equations (3)–(8), the state vectors of the discretized system at successive time steps
can be expressed as

Xiþ1 ¼ AXi: (9)

The state vector Xi and the corresponding amplification matrix A vary for different prediction
methods. For instance for the third-order Hermite extrapolation techniques, Xi is defined as Xi ¼
xi�1

2
_xi�1

2
xi _xi x

0
i x

0
iþ1

2

h iT
, where xi�1

2
and _xi�1

2
are structural responses at intermediate stages.

The delay tc is assumed to be equal to the time integration interval Δt. Because the LSRT2 is a
two-stage method, two predictions are carried out for each time step; that is, the prediction of
x0i + 1 is based on yi�1

2
and yi; x

0
iþ3

2
is based on yi and yiþ1

2
.

The stability of the RHS can be evaluated by calculating the spectral radius of A. In greater detail,
Figure 3 shows the spectral radii of the LSRT2 method endowed with the aforementioned

compensation schemes, where Ω ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kn þ keð Þ=mn

p
Δt and kn = ke. Note that we assumed that the
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Figure 1. Frequency response functions of various displacement prediction methods.

Figure 2. Computation model of an undamped SDOF system.
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dynamics of the transfer system is represented by a pure delay, which contrasts with the bilinear
approximation of the step response assumed in [19]. From Figure 3, we can see that among the four
compensation methods, the one based on the second-order Hermite extrapolation possesses the
largest stable range for the LSRT2 method; it ranks third in Figure 1, when the time integration is
not considered. It is more surprising to observe that the method based on the third-order Hermite
extrapolation becomes unstable for small values of Ω, in contrast with its largest stability margin
exhibited in Figure 1. These trends can be verified by means of a theoretical investigation on
stability for small values of Ω and of a zero-stability analysis both presented in Appendix A2.
Similar behavior can also be found for a delay compensation technique based on the more
traditional explicit Newmark integration method with a linear acceleration prediction, as
demonstrated in Appendix 1.

From the aforementioned analysis, we can see clearly that the stability of RHS characterized by time
delay is not only related to compensation methods but also to integration methods; a better prediction
accuracy provided by a frequency response of the prediction itself does not indicate a better
performance of RHS. In other words, the stability of the time integration method is affected by the
inaccuracy of prediction employed for delay compensation; this interaction is quite complex.
Moreover, the delay tc is assumed to be constant and known in the analysis, whereas in actual tests,
t may vary because of changes in the specimen stiffness, reaction force, and signal frequency. The
aforementioned analysis also assumed that the transfer system or actuator could simply be modeled
as a dead time, and hence, no amplitude control error existed. Actual transfer systems are much
more complex; thus, disturbances and specimen-actuator interactions may also affect actuator
control performance.

One way to cope with the aforementioned uncertainties in time delay, control performance, and
prediction inaccuracy is based on an upper bound delay technique that will be presented in the next
section. As stated by the terminology of upper bound or overcompensation, the assumed delay tc for
a displacement prediction is deliberately assumed to be larger than the actual system delay t. This
differs from the usual delay compensation schemes where tc = t. For clarity hereafter, we name the
latter assumption as the conventional delay compensation technique.

3. DELAY OVERCOMPENSATION AND OPTIMAL FEEDBACK

The idea behind the new compensation technique is to assume an upper bound delay tc not less than
the possible maximum delay present in the RHS and use it for prediction; then, the actual delay will
be overcompensated. In greater detail, let the desired displacement be achieved earlier than it should
be and then find the corresponding reaction force to be fed back to the NS. With reference to
Figure 4, the procedure of the overcompensation scheme can be described as follows:
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Figure 3. Stability of the RHS based on the LSRT2 method and different prediction methods.
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(1) calculate the structural response xi+ 1;
(2) predict x(ti+ 1 + tc)0, that is, the displacement at ti+ 1 + tc, where tc is an upper bound system

delay;
(3) send out the predicted displacement at ti+ 1;
(4) and search for the measured feedback force rm(t), corresponding to the closest measured displace-

ment xm(t) to xi+1, and feedback the force to the NS.

Evidently, as long as the chosen displacement in Step (4) above matches xi+ 1, exact delay
compensation is achieved, which means that the measured force rm(t) corresponds to the desired
displacement xi+ 1 without errors owing to prediction methods and actuator control. Compared with
conventional delay compensation methods, no matter how error exists in the predicted displacement,
we minimize errors by choosing, from among recent data, the displacement xm(t) nearest to the
desired one xi+ 1. As a result, satisfactory properties such as error reduction and stability
improvement can be expected.

At this stage, a key problem is how to optimally select the displacement measurement xm(t) and the
corresponding feedback force rm(t). As shown schematically in Figure 4, the desired displacement is
achieved tO ahead of the targeted time ti+1 because of overcompensation. However, we do not know
the exact value of tO, and therefore, we need to seek tO in a certain time range so that the measured
displacement at ti+ 1� tO is as close as possible to xi+ 1, and ideally equal to xi+ 1. To ensure that tO
can be found, we may assume t0m as the maximum tO and find out tO within the time range
[0, 2t0m]. In other words, the optimal problem can be described as follows: find
top = {t2 [ti+ 1� 2t0m, ti+ 1] : min |xm(t)� xi+ 1|}. Because tO = tc� t, t0m may be determined on the
basis of the estimation of minimum of actual delay t in the interested frequency range. If there are
two optimal xm(t)s, which may occur around the time when the displacement peaks, the one such
that the corresponding velocity has the same sign as that associated with the desired displacement
should be chosen. For the particular case shown in Figure 5, B0 rather than B00 is chosen because the
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velocities of B0 and B are both positive. In the optimization process, because the amount of data in the
time range chosen is usually limited, the optimal xm(t) can be determined simply by comparing all the
data involved, and hence, no iteration is needed. For example, the amount of data will be 21, if the
search range for tO is [0, 2Δt], Δt = 10/1024 s, and sampling frequency of displacement
measurement is 1024Hz.

One of the important issues of the proposed compensation method is how to determine an
appropriate upper bound delay. The upper bound can be estimated with the possible largest stiffness
of specimen during the test, as the delay increase with increasing stiffness. For most civil
engineering structures, they usually exhibit softening behavior. So the upper bound of delay may be
determined on the basis of initial stiffness of the specimen. If, for some reason, the real delay is
greater than the assumed upper bound, then the over-compensation retreats to conventional
compensation with a fixed delay equal to the assumed upper bound, which is obviously still
advantageous compared with the conventional compensation with a delay estimate less than the
assumed upper bound.

Note that, for a specimen that is dependent on velocity, the optimal force feedback should be
determined by searching the velocity response closest to the desired velocity, rather than the
displacement response closest to the desired displacement. So the over-compensation is applicable to
velocity-dependent specimens too. Of course, more challenges may arise when a specimen depends
on both velocity and displacement. This is an open problem that deserves further studies not only
for the compensation proposed in this paper but also for other compensation schemes.

4. NUMERICAL SIMULATIONS

4.1. Linear case

This section presents numerical simulations with the upper bound delay compensation presented in
Section 3. Both second-order and third-order Hermite predictions described in Equations (6) and (7),
respectively, for the SDOF system shown in Figure 2 are considered. For time integration, we use
the LSRT2 method with a time integration interval Δt= 0.01 s. The mass of the structure model is
set equal to 1 kg, while the stiffness kn = ke = 200 N/m is chosen such that Ω= 0.2. The actual delay
t is assumed constant and equal to Δt. For conventional compensation, the compensated delay used
in the prediction formula is equal to actual delay, that is, tc = t, whereas for the overcompensation
scheme with an upper bound delay, tc = 1.5Δt.

For the LRST2 method combined with conventional compensation schemes, the calculated
responses both at the intermediate step and at the end of the time step are used for prediction.
However, the time instant corresponding to the response at the intermediate step, yi+ 0.5, is not
necessarily equal to ti+ 0.5, and the LRST2 algorithm does not describe how to determine this time
instant. For simplicity, it is assumed to be at the midpoint between ti and ti+1, that is, at ti+ 0.5, on the
basis of which stability analysis is carried out in the last section. Numerical simulations show,
however, that this assumption may result in oscillation of displacement prediction and hence of the
actuator command. To avoid command oscillation, we use the information at ti instead of ti+ 0.5, and
the information at ti+ 1 as well, to predict the displacement response x0i+ 3 at ti+ 3. Then, this
predicted displacement is sent out to the actuator with a linear interpolation from ti+ 0.5 to ti+ 1.5.
Apparently, this treatment leads to 0.5Δt of overcompensation. Hence, the optimal measured
displacement can be sought in the time span Δt according to the procedure described in Section 3.

Figure 6 shows simulation results of free vibration with an initial displacement of 0.01m, in which
the second-order Hermite prediction is employed. Clearly, the conventional compensation entails
algorithmic dissipation, in agreement with the spectral properties depicted in Figure 3. Conversely,
the proposed delay overcompensation scheme effectively reduces dissipation and provides more
accurate results, consistent with analysis in Section 3.

To further reveal the characteristics behind the favorable accuracy of overcompensation, the
solutions of optimal displacement measurements are examined. In this respect, we define an
indicator J, as the number of times in which the measured displacement is equal to the desired
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displacement in each optimization process. Thus, J= 0 indicates that no measured displacement is
identical to the desired displacement, whereas J = 1 and J = 2 mean that one and two displacement
measurements are identified equal to the desired displacement, respectively. The cases of J = 1 and
J = 2 are illustrated in Figure 5. Among 4000 time integration points, with two points in each time
step owing the two-stage LSRT2 method, there are 35, 3922, and 43 for J= 0, 1, 2, respectively. In
greater detail, J> 0 indicates exact compensation, and hence, perfect compensation is achieved for
99.12% of the total simulation time. When the amplitude of the actual displacement is less than the
desired one, J will be zero around displacement peaks.

Figure 7 shows the results provided by the third-order Hermite prediction. The conventional
compensation brings an unstable response as expected by the spectral analysis shown in Figure 3,
whereas the result of the overcompensation scheme accurately matches reference results. In this
particular case, there are 32, 3875, and 93 in 4000 time integration points for J = 0, 1, 2, respectively,
again indicating perfect compensation for most of the time steps.

4.2. Nonlinear case

In this subsection, we consider a PS with a bilinear hysteretic force–displacement relationship. The
yielding displacement and strain-hardening ratio of the specimen are 25mm and 0.115, respectively.
The initial stiffness of the specimen is 44.41N/m, which is identical to the numerical stiffness and
results in a frequency of the whole emulated structure equal to 1.5Hz. The other parameters are the
same as those employed in Section 4.1. The second-order Hermite prediction is employed for this
nonlinear case. The El Centro earthquake (NS, 1940) with an acceleration peak 0.13 g is used.

The first 10 s of displacement time histories and force–displacement relationship of the PS are
presented in Figures 8 and 9, respectively. For comparison, numerical results obtained by the central
difference method and the time interval of 1ms are presented as reference solution. The
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displacement amplitude of the conventional compensation is larger than the reference solution. This
result shows that the conventional compensation scheme based on the third-order prediction still
results in some error although the hysteretic dissipation improves the response stability. Conversely,
the displacement obtained with the overcompensation scheme matches the reference solution quite
well. The indicator J is evaluated too and reads J = 0, J = 1, and J = 2 for 45, 1946, and 9 time
points, respectively. Like the linear case, exact compensation is achieved for most of the time. Note
that in this nonlinear case, the restoring forces differ for the same optimal measured displacement
for J = 2, owing to the hysteretic force–displacement relationship. The force corresponding to the
measured displacement with the same motion direction as desired is chosen as force feedback for
response calculations.

It should be noted that actuators are modeled by means of a pure delay to simplify the spectral
analysis in Section 2, and the pure delay model is also used in this section for numerical validation.
The dynamics of an actuator system is in general dependent on both frequency and amplitude, and
this behavior can generally be represented by a first-order transfer function. However, the
uniqueness of the compensation presented in this paper is its robustness on delay variation, one
source of which is the variation of input frequency. It has been validated by the numerical studies
aforementioned and is to be further validated by the experimental studies in the next section. In
addition, extra numerical analyses have shown that the proposed compensation technique offers
even better results with a first-order model of actuator than with a pure delay model; hence, the pure
delay model results in a conservative evaluation of advantage of the over-compensation scheme.
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Figure 8. Displacement responses in the nonlinear regime provided by the overcompensation and conventional
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5. TEST VALIDATION

To check the performance of the delay compensation technique, some RHSs involving both SDOF and
MDOF systems will be considered in this section.

5.1. Test setup

A versatile test system was conceived and installed at the University of Trento, Italy, to examine
actuator control techniques and assess the reliability of RHS for linear/nonlinear MDOF structures.
Basically, the system consists of four electromagnetic actuators and a dSpace DS1103 control board.
The test rig design is flexible so that PS made up of springs, dampers, and masses with different
mechanical properties can be configured as shown schematically in Figure 10. For the RHS
considered here, the actuators were operated with a Proportional-Integral-Derivative (PID) controller
tuned with the Chien, Hrones, and Reswick scheme for zero overshoot step response [20]. In
addition, electromagnetic noise was reduced by an elliptic filter [21] with a pass frequency and a
stop frequency of 20 and 30Hz, respectively. The sampling frequency of both control and
measurements were set equal to 1024Hz.

5.2. Assessment of compensation accuracy with a prescribed displacement command

This subsection investigates the accuracy of the conventional and proposed compensation strategies
with the aforementioned test system subject to a prescribed displacement command. Firstly, to
evaluate the system delay, a test was performed with a sinusoidal command—in mm—which reads

xc tð Þ ¼ 10sin 2ptð Þ: (10)

To estimate the delay, the least square method is employed and formulated as

min
t

1
n

Xn
i¼1

xc tið Þ � xm ti � tð Þj j2: (11)

In Equation (11), xm(�) denotes the measured displacement, and n is the total number of data points. In
the test, the time duration was 25 s, the sampling frequency 1024Hz, and hence, n= 25 600. The
solution showed that the delay t of the system was about 16.6ms.

To investigate the effects of delay compensation, the actuator was commanded to realize a desired
displacement containing three frequency components, expressed as

Counter-frame

Actuator

Spring

Disp. Sensor

Load Cell

Mass

Figure 10. Photograph of test rig.
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x tð Þ ¼ 5sin 2ptð Þ þ 3sin 4ptð Þ þ 2sin 8ptð Þ: (12)

For the overcompensation strategy, the assumed upper bound delay tc was 20ms for all RHSs,
indicating that the delay was overcompensated by 3.4ms. The optimal measured displacement was
searched for in data of the last 12ms. The third-order Hermite scheme was used for displacement
prediction both in this and the next subsections. The proposed over-compensation scheme was
compared with the conventional compensation scheme by means of the displacement errors defined
as the actual minus the desired displacement, as depicted in Figure 11. By means of the
overcompensation strategy, the standard deviation of error was reduced from 0.225 to 0.115mm,
nearly by half, while the peak error decreased slightly, that is, from 0.457 to 0.414mm. Part of the
desired, measured, and optimal displacements are shown in Figure 12, where we can see that the
discrepancies between the desired and optimal displacements are small.

5.3. RHS on an SDOF system endowed with a spring specimen

The structure model is depicted in Figure 2, and relevant structural parameters are presented in Table I.
The excitation is a sinusoidal load with a frequency of 1.3Hz and amplitude of 300N. The time step
employed for the LSRT2 method is 10ms. Three tests were carried out with a conventional
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Figure 11. Global and close-up views of displacement errors in RHS with a sinusoidal command.
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compensation, an undercompensation with 15ms, and the overcompensation method with an upper
bound delay tc = 20ms. Figure 13 shows the displacement response of the RHS with
overcompensation as well as the pure numerical result obtained by considering the friction force
between the spring and the guide tube. The friction force was about 50N, measured before the RHS.
One can observe from Figure 13 that the response of the RHS matches the numerical simulation
quite well. Figure 14 shows the displacement errors in the frequency domain for different
compensation schemes. Clearly, the displacement error increased significantly even if the delay was
underestimated by only 1.6ms. In contrast, errors were remarkably reduced when the proposed
overcompensation scheme was applied.

5.4. RHS on a five-DOF system with a physical mass

The whole structure consisted of a NS with five DOFs and a PS with an SDOF. The structure model is
schematically depicted in Figure 15, where k0 = 200 kN/m, m0 = 900 kg, kn1 = 160 kN/m, mn1 = 600 kg,
ke� 40 kN/m, and me� 298 kg. The natural frequencies of the five modes were 0.68, 1.97, 3.11, 3.99,
and 4.55Hz, respectively. A sinusoidal force with amplitude 1 kN and frequency 1.5Hz was imposed

Table I. Structural parameters of the SDOF system.

mn (kg) kn (kN/m) cn (kNs/m) ke (kN/m) ce (kNs/m)
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Figure 13. Comparison of RHS and numerical responses for an SDOF system.
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Figure 14. Displacement errors for RHS in the frequency domain.
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on the DOF to the right end in Figure 15. The second-order Hermite prediction was used for the
compensation schemes. Both the displacement response from the RHS with overcompensation and
the numerical result are presented in Figure 16. They basically agree well. The standard deviations
of displacement errors were 0.169 and 0.0821mm for conventional and overcompensation scheme,
respectively, which reconfirms the effectiveness of the proposed method in terms of error reduction.

6. CONCLUSIONS

In this paper, a new scheme for delay compensation consisting of an upper bound delay and optimal
feedback is proposed. The main conclusions are summarized here.

(1) The stability of RHS with time delay is related not only to compensation methods but also to
concurrent integration methods. Even when time delay is exactly known, with conventional
compensation methods, some combinations of numerical integration schemes and displacement
prediction techniques may reduce response stability and lead to unconditional instability in the
worst cases.

(2) A nearly exact delay compensation scheme is proposed, in which the displacement is over-
compensated by means of an upper bound delay, and then, the datum closest to the desired
displacement is picked out by an optimal process. The advantages of this scheme over
conventional compensations for delay have been shown both through numerical simulation
and by actual hybrid simulation.

Work is in progress to verify the effectiveness of the proposed compensation scheme based on an
upper bound delay when several PSs are involved.

APPENDIX A: Stability of the explicit Newmark integration scheme with a linear acceleration prediction

For an RHS, the equation of motion of an undamped linear SDOF system discretized with the explicit
Newmark method reads as follows:

mn€xiþ1 þ knxiþ1 þ re;iþ1 ¼ fiþ1 (A:1)

Figure 15. Computation model for the five-DOF system.
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xiþ1 ¼ xi þ Δt _xi þ 1
2
Δt2€xi (A:2)

_xiþ1 ¼ _xi þ 1
2
Δt €xi þ €xiþ1ð Þ: (A:3)

To compensate for a delay t, through a linearly varying acceleration [6, 8], the predicted displacement
reads

x tiþ1 þ tð Þ0¼ xi þ Δt þ tð Þ _xi þ 1
3

Δt þ tð Þ2€xi þ 1
6

Δt þ tð Þ2€x 0
(A:4)

with

€x tiþ1 þ tð Þ0¼ €xi þ Δt þ t
Δt

€xi � €xi�1ð Þ ¼ 2þ �ð Þ€xi � 1þ �ð Þ€xi�1: (A:5)

The value of x0i+1 can be calculated assuming t =Δt and replacing i+1 with i in Equations (A.4) and
(A.5). Then, the restoring force of a PS consisting of a linear spring can be obtained with

re;iþ1 ¼ kex
0
iþ1 (A:6)

As a result and with the assumption ke = kn we obtain the following amplification matrix A:

A ¼

1 1 1=2 0 0

� Ω2=4 1� Ω2=4 1=2� Ω2=8 0 �Ω2=4

� Ω2=2 �Ω2=2 �Ω2=4 0 �Ω2=2

0 0 1 0 0

1 2 10=3 �4=3 0

2
66666664

3
77777775

(A:7)

and the corresponding state vectorXi ¼ xi Δt _xi Δt2€xi Δt2€xi�1 x
0
iþ1

� �T
. The relevant spectral radius is

shown in Figure A1. At first glance, the stability limit Ω seems to be Ω= 0.82; however, a careful reader
can find that the spectral radius is greater than unity also for Ω close to zero. This can be rigorously
proved by the Routh’s stability criterion.
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Figure A1. Spectral radius of the explicit Newmark integration scheme with a linear acceleration prediction.
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In greater detail, the Routh’s criterion is a well-known analysis tool for system stability in control
theory. To apply this criterion, the characteristic polynomial associated with the time integrator is
firstly expressed in terms of the complex s variable by replacing the eigenvalue variable l with
(1 + s)/(1� s). This process maps the unit circle characterized by |l| = 1, into the imaginary axis of
the s-plane and the interior part of the circle into the left half of the s-plane [22]. As a result, the
characteristic equation related to the amplification matrix (A.7) reads

6l5 þ �12þ 3Ω2
� �

l4 þ 13Ω2 þ 6
� �

l3 � 21Ω2l2 þ 15Ω2l� 4Ω2 ¼ 0 (A:8)

Substituting l= (1 + s)/(1� s) into (A.8) yields

12þ 25Ω2
� �

s5 þ 36� 41Ω2
� �

s4 þ 36� 2Ω2
� �

s3 þ 12þ 6Ω2
� �

s2 þ 9Ω2sþ 3Ω2 ¼ 0 (A:9)

Then, the array associated with the Routh criterion is obtained and tabulated in Table AI, with

b1 ¼ a4a3 � a2a5
a4

b2 ¼ a4a1 � a0a5
a4

c1 ¼ b1a2 � b2a4
b1

c2 ¼ b1 d1 ¼ c1b2 � c2b1
c1

e1 ¼ c2

: (A:10)

Here, ai(i= 0, 1, 2, . . ., 5) is the coefficient of the ith-order term in Equation (A.9). In addition, d1 is
expressed as

d1 ¼
64 262Ω4 � 183Ω2 þ 18

� �
Ω4

1551Ω6 � 1288Ω4 þ 2208Ω2 � 1152
: (A:11)

It can be easily shown that, for small Ω, the elements of the first column of Table AI are all positive
except d1 that is negative. By the Routh criterion, Equation (A.9) contains roots with positive real parts,
and the corresponding spectral radius of A is greater than one. This is consistent with what we
observed from Figure A1(b).

The result of this analysis highlights a serious stability problem, when one tries to increase the
algorithm accuracy by reducing the time step. Even worse, the combination of the explicit Newmark
scheme with the linear acceleration prediction does not satisfy the zero-stability condition, which will
be proved as follows.

The zero-stability concept regards the stability of an integrator when Δt! 0, which is a necessary
condition of convergence of a time integrator [23]. Let Δt=0 in Equation (A.7), and as a result, we have

Table AI. The array associated with the Routh’s criterion.

a5 a3 a1
a4 a2 a0
b1 b2 0
c1 c2 0
d1 0
e1
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A ¼

1 1 1=2 0 0

0 1 1=2 0 0

0 0 0 0 0

0 0 1 0 0

1 2 10=3 �4=3 0

2
6666664

3
7777775
: (A:12)

This matrix has eigenvalues l1,2 = 1 and l3,4,5 = 0. The eigenvalues of multiplicity two are apparently
equal to one, and the corresponding eigenvectors can be easily shown to be linearly dependent.
Therefore, A is unstable according to [22], and hence, the time integration method is not zero-stable.

APPENDIX B: Stability of the LRST2 method with a third-order Hermite polynomial prediction

We have shown in Figure 3 that the LRST2 method with the third-order Hermite polynomial prediction
appears to be unconditionally unstable, which means that the spectral radius is greater than one for Ω
close to zero. We prove this statement here with the techniques employed in Appendix 1.

The amplification matrix A is 6� 6 and is characterized by a zero eigenvalue. Thus, the character-
istic equation reduces to a fifth order and reads

ð4g4Ω4 þ 8g2Ω2 þ 4Þl5 þ ð�8g4Ω4 þ 12g3Ω4 � 5=2Ω4g2 þ 2Ω2 � 16g2Ω2 � 8Þl4

þð219=2Ω4g2 � 36g3Ω4 þ 4g4Ω4 � 30Ω4gþ 8g2Ω2 þ 1=4Ω4 þ 84Ω2g� 18Ω2 þ 4Þl3

þð�54Ω4 þ 52g3Ω4 þ 42Ω2 þ 324Ω4g� 168Ω2g� 987=2Ω4g2Þl2

þð�28g3Ω4 þ 1589=2Ω4g2 � 22Ω2 þ 84Ω2gþ 201=4Ω4 � 392Ω4gÞl
þ202Ω4g� 392Ω4g2 � 53=2Ω4 ¼ 0

(A:13)

The Routh criterion yields the same array as that shown in Table AI, but its elements are determined by
Equation (A.13). In this particular case, the coefficient d1 has the form

d1 ¼ nun Ωð Þ
den Ωð ÞΩ

4 (A:14)

where num and den are two polynomials that depend on Ω. In addition, as Δt! 0, d1/Ω
4! 128g3 +

496g2� 656g + 136; moreover, if g ¼ 1� ffiffiffi
2

p
=2, 128g3 + 496g2� 656g+ 136�� 10.37< 0, whereas

the other five elements in the first column are all positive for small Ω. Therefore, the method is not
stable when Ω is small. This result matches the trend observed from Figure 3.

The zero-stability analysis can be performed here as before. Therefore, for Δt= 0, we have

A ¼

1 1 0 0 0 0

0 1 0 0 0 0

1 3=2 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1 2 0 0 0 0

2
666666664

3
777777775
: (A:15)

Again, we find that l1,2 = 1 and hence also this method is not zero stable according to [22].
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